
The LinguisTiX bundle
निरंजन

19 January 2026 (v0.7)
HOME https://ctan.org/pkg/linguistix

Git-Alt https://puszcza.gnu.org.ua/projects/linguistix

COMMENTS https://matrix.to/#/#linguistix:matrix.org

Abstract

There are quite a few LATEX packages that support typesetting in linguistics, but
most of them lack a modern LATEX-like users syntax as well as a programming interface.
The LinguisTiX bundle fills this gap. It contains several packages enhancing the
general support for linguistics in LATEX. This is a comprehensive documentation of the
same comprising of three parts. The first one is the general users manual, the second
one documents the programming interface of the bundle, whereas the last one is the
documented implementation of all the packages.

Contents
1 Introduction 3

2 Planned 4

3 Funding 4

4 Acknowledgements 4

5 LinguisTiX-base 5
Interface… 17; Implementation… 23

6 LinguisTiX-fixpex 5
Interface… 18; Implementation… 24

7 LinguisTiX-fonts 5
Interface… 18; Implementation… 26

8 LinguisTiX-glossing 7
Interface… 18; Implementation… 36

9 LinguisTiX-ipa 9
Interface… 19; Implementation… 51

10 LinguisTiX-languages 12
Interface… 19; Implementation… 61

11 LinguisTiX-logos 14
Interface… 20; Implementation… 68

12 LinguisTiX-nfss 14
Interface… 20; Implementation… 69

The LinguisTiX bundle
Copyright © 2025, 2026 निरंजन

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see
https://www.gnu.org/licenses/.

1

https://ctan.org/pkg/linguistix
https://puszcza.gnu.org.ua/projects/linguistix
https://matrix.to/#/#linguistix:matrix.org
https://www.gnu.org/licenses/

Dedicated to Renuka who taught me rigour under the guise of linguistics…

1 Introduction
Linguistics is a discipline that studies the phenomenon of language and for this linguists
analyse data from languages across the globe. In order to be able to present the data
that is collected for this, linguists use several representational methods that lead to a
fiasco when their typesetting is considered. In order to understand the complexity of the
task at hand, first, let’s have a look at some of the problem cases. If you are an impatient
reader and are just willing to read the users manual, you may skip reading the current
section and start with section 5 and the ones following it.

1 Phonetic symbols
Speech sounds are the building blocks of many human languages and the data collected
from languages demands an unambiguous method of representation which is served by
the International Phonetic Alphabet. For the longest time, the TIPA package (https:
//ctan.org/pkg/tipa) was the one that produced phonetic symbols in (LA)TEX. Visually,
it matches the default Computer Modern design of (LA)TEX, but TIPA is not Unicode. It
is set in a legacy encoding. With the recent developments, the New Computer Modern
family supports all the IPA characters (even the ones that are missing in TIPA). They are
created keeping in mind the principles of Knuth’s Computer Modern. Additionally, the
family also supports sans serif (recommended in presentations) and mono (recommended
in coding context) families. It supports two weights, i.e., book and regular respectively.
The book weight is slightly thicker than the regular weight, but the regular one matches
the thickness of the Computer Modern design. Because of the increased thickness, the
former looks better. The current document, for example, is typeset in the book weight of
New Computer Modern. If you are like me, you probably don’t like using non-LATEX-fonts.
The good news is that the requirements of linguistics are very well fulfilled by the recent
developments in the New Computer modern family and it does belong to the fraternity of
LATEX-fonts.

Apart from this, there are some other advantages of the New Computer Modern fonts.
The IPA distinguishes between [a] and [ɑ], but unfortunately, in Italic shape, the latter is
a variant of the former. E.g., [a\textit{a}] produces ‘[aa]’. Whenever an author uses
Italic shape for their transcription and use a, a wrong IPA symbol is printed with most
fonts. This problem was kindly acknowledged by Antonis Tsolomitis, the developer of
New Computer Modern. In the stylistic set dedicated for linguistics, the correct shape
was added to the Italic shape by him. Thus, \ipatext{a\textit{a}} (a command from
LinguisTiX-ipa) renders ‘[aa]’. The package enables New Computer Modern family with
stylistic set 05 dedicated for IPA. It also adds the brackets or slashes around the argument
as explained in section 9.

A similar problem is with the character g. E.g., [g\textit{g}] produces ‘[gg]’. Here,
the situation is the other way round. The upright ‘g’ is not recognised by the IPA. The
IPA charts generally have the upright version of the Italic shape. To see what this means,
try \ipatext{g\textit{g}}. It produces [gg] and not [gg].

In order to avail all of these features, I have set New Computer Modern as the default
font-family of LinguisTiX. The bundle provides options to control these defaults. Users
can use their preferred text and IPA fonts. There also is an option to use the regular
weight of NewCM instead of the book weight.

3

https://ctan.org/pkg/tipa
https://ctan.org/pkg/tipa

2 Planned
I plan to develop this bundle further in order to support the typesetting of good quality
examples with interlinear glossing. My model is to imitate the output of the expex package,
but with a modern LATEX-like syntax.

3 Funding
I am a doctorate student without a fellowship (thanks to our education policies!) currently
sustaining only with a full time job unrelated to linguistics that consumes most of my
working hours. At times, it becomes difficult to continue the research, the job and the
passion development projects. LinguisTiX needs funding in order to sustain. If you think
you can support it, you can contact me on the email ID found on the front page.

As of 2025-05-29, I have recieved funding from the TEX users group’s TEX develop-
ment fund. They have decided to support the development of ‘linguistix-glossing’ (the
logo will be available once the package is ready).

An experimental version of LinguisTiX-glossing is released on 2026-01-19. This
version is for testing and getting feedback from the community. This marks the completion
of the first grant provided by the TEX users group’s. The project will still continue to
develop further, so funding initiatives will be highly appreciated.

4 Acknowledgements
This package relies the most on the New Computer Modern font family. I would like to
express my gratitude to Antonis Tsolomitis who tirelessly worked on the set of IPA symbols
and brought back the good old charm of TIPA’s design in the modern Unicode world.
I would like to thank Renuka and Avinash who taught me linguistics. They nourished
my passion, helped me pursue my love for the subject as well as the computation that
came along with it. I could have never imagined myself working on a package written in
LATEX3’s syntax. Not so long ago, I used to find it very complicated. It’s mostly Jonathan
Spratte and Florent Rougon’s help (and, at times, scolding :P) that helped me get used
to it. I would also like to mention C.V. Radhakrishnan for being an important part of my
journey in LATEX. Lastly, to all the free software people who have created this friendly
and supportive world for people by investing their precious time and resources!

Hardly in a week after the initial release, the TEX users group decided to financially
support the development of a planned package in the bundle. I am grateful to them for
their support.

Documentation
The bundle is comprised of several packages that are developed for different purposes. In
order to load all the packages of the bundle, one can issue:

\usepackage{linguistix}

This is the easiest method for getting all of LinguisTiX in one go. But, if you don’t
need all the packages of the bundle, you may load the required packages separately. We
will start with the elementary package that sets up things for other packages of the bundle.

4

5 LinguisTiX-base LATEX3-interface | Implementation

This package provides a single command that is used in all the other packages of the
bundle. The command is:

{⟨key-value-list⟩}

We have a single set of keys for the entire bundle. Each package appends keys to the
same set. The argument of this central processor command is the comma-separated
⟨key-value-list⟩. So you can load any package of LinguisTiX and use the \linguistix
command. The only exception to this is LinguisTiX-nfss. We will see how it is different
in its section.

\linguistix

6 LinguisTiX-fixpex LATEX3-interface | Implementation

This package offers a fix for the clash between expex and unicode-math. It provides a
single command.

This is a replica of the unicode-math-\gla. Since the expex-\gla is more relevant in
linguistics, I set it as the default. If one needs to use unicode-math-\gla, they can use
this command.

\umgla

7 LinguisTiX-fonts LATEX3-interface | Implementation

This is a package that loads the New Computer Modern family for the entire document.
The package sets fonts for both text and math. It has keys for customisation for both.
Note that just loading this package does not provide any support for IPA. For that one
needs LinguisTiX-ipa separately.

Antonis suggested a typographic enhancement for the logo of LATEX. The default
logo scales the ‘A’ and that affects the ‘colour’ of the font. This is why I renew the logo
with the code given by Antonis. The original logo is also available with an alternative
command.

LATEX
LATEX

\LaTeX
\ogLaTeX

The package provides only these commands. Let’s now have a look at the keys
provided for the text.

1 Text
Most keys of this package are prefixed with the text in order to distinguish them from
the maths and IPA ones. There aren’t any commands provided by the package. Most of
the important features of the fontspec packakge are variablised with l3keys.

The ‘old style numbers’ have varying heights. Some numbers have ascenders and
some have descenders (e.g., 6789). According to Bringhurst 2004, this makes them easier
to read in running text. Lining numbers, on the other hand have uniform heights. They
go well with all capital text (rare). Thus, for the general text, I enable this setting by
default in LinguisTiX-fonts.

5

Apart from that, the New Computer Modern font family provides an old-style shape
for the number ‘1’ (this exact shape!), but it is provided as a character variant. Different
fonts may use these arbitrary slots for any character’s alternation. Therefore this setting
should not be loaded blindly. Let’s have a look at the keys that can be employed to
change these behaviours.

= {⟨truth value⟩} true | false
= {⟨truth value⟩} true | false

If one wants to disable old style numbers, they may use the old style numbers key with
the false value (default is true)1. Note that printing of old style numbers also depends
on whether the font you select has old style numbers or not. The relevant settings are
added by the package to the font automatically, but while selecting the font, make sure
whether the old style table is present in the font or not.

Suppose one wants the alternative shape of number ‘1’ from the New Computer
Modern family, they may use the key old style one (default is false; adding true is
optional).

old style numbers
old style one

Let’s have a look at the three way distinction we get because of this.

0123456789 Old style with default 1

0123456789 Old style with the old 1

0123456789 Lining

These are some keys that come in handy for setting New Computer Modern defaults. All
the necessary values are stored in these. The keys that have regular in their names refer
to the ‘regular’ variants of New Computer Modern fonts. These variants match the colour
and widths of the Latin Modern fonts. One may use these keys to override the defaults.

newcm
newcm sans
newcm mono
newcm regular
newcm regular sans
newcm regular mono

2 Maths
LinguisTiX-fonts sets maths fonts also. In order to control the settings related to maths,
the following keys can be used.

= {⟨math font⟩}
= {⟨math font features⟩}
= {⟨bold math font⟩}
= {⟨bold math font features⟩}

The math and math bold keys set the respective fonts (i.e., regular and bold fonts for
mathematics respectively). The keys suffixed with features set the font features of the
same.

math
math features
math bold
math bold features

1The possible and the default values of keys are given at the right side in the documentation and the defaults
are highlighted in red.

6

= {⟨truth value⟩} true | false

In (LA)TEX, the default shape of the ‘empty set’ symbol is: ‘∅’, but the symbol used by
the Bourbaki group is still considered more correct and preferred by many (including
me). New Computer Modern Math fonts provide it by default and the slashed zero is
provided as a character variant. Since the Unicode-correct \emptyset is activated by
the package, it always renders: ‘∅’ and not: ‘∅’. In order to change this behaviour, one
may use this key and set it to false for getting the slashed-zero of original (LA)TEX. Hail
plumbers union, IYKYK! ;-)

bourbaki's empty set

8 LinguisTiX-glossing LATEX3-interface | Implementation

This package provides a suit for creating interlinear glosses. It is supported by TEX users
group’s devfund. The package attempts to be an all-in-one solution for glossing. It doesn’t
provide any particular glosses. It only provides a method to create them. Using it, one
may easily create packages like LinguisTiX-leipzig to support a set of glosses. The glosses
created by the package use the new code of the LATEX project as they are created in a
tagging aware manner. Each gloss sets a hyperlink to its position in the list of glosses.
Let’s take a look at its commands and options.

{⟨comma separated list of glosses⟩}
{⟨comma separated list of glosses⟩}

This simple commands take a comma separated as their argument. All the items from the
list are glosses (either created by the user or provided by a package). Cases are ignored.
Spaces around the glosses are ignored. The regular unstarred command prints the glosses
of each of the item in the comma separated list, whereas the starred variant prints their
expansions. Have a look at the following example.

\glx
\glx*

\DocumentMetadata{tagging=on,lang={en-GB}}
\documentclass{article}
\usepackage{linguistix-glossing}
\newgloss{prs}{present tense}
\newgloss{pst}{past tense}

\begin{document}
\glx{prs,pst}\par
\glx{ prs, pst }\par
\glx{ Prs,pSt}

\glx*{prs,pst}\par
\glx*{ prs, pst }\par
\glx*{ Prs,pST}
\end{document}

This example produces identical output in three lines for glosses and the same for its
expansions. Notice that there is no format to the cases of the glosses and similarly one
level of spaces are trimmed.

7

{⟨gloss⟩} {⟨expansion⟩}
{⟨gloss⟩} {⟨expansion⟩}
These commands create a new gloss or renew an existing gloss. They can be accessed
with the \glx command as explained above. Using \renewgloss mid-document is not
recommended. It will erase the data of page numbers for the previous version of it.

\newgloss
\renewgloss

{⟨keys for formatting glosses⟩}

This command takes one argument, i.e., the keys that control everything regarding the
use of glosses and their expansions. The keys it takes are described in the section that
follows.

\setupglossing

[⟨setup keys⟩]

This command prints the list of glosses using the default settings. If the optional argument
is used, the adjustments are made locally only for a single run.

\listofglosses

1 Setting up the glosses
The following keys can be passed to the command \setupglossing. They control the
printing along with a lot of other things regarding glosses. All the customisation offered
by the package can be accessed via this command.

= {⟨formatted element gloss/expansion⟩}
= {⟨formatting commands for glosses⟩} \textsc{#1}
= {⟨formatting commands for glosses⟩}
The format key is used for setting the format of either gloss or expansion. It’s a meta key
that takes other key-val pairs in the argument. The nested keys control the formatting of
the respective elements. No special formatting is applied to expansions, but glosses are
by default printed in \textsc. These are the defaults of gloss and expansion.

format
gloss
expansion

= {⟨link color⟩} black

This option locally sets the colour for the hyperlinks. By default they are set to the black
colour.

link color

= {⟨sorting style⟩} alphabetical | use

This key controls how the keys printed in the list of glosses are ordered. They may be
ordered alphabetically or following the sequence in which they were used, the former
being the default.

sort

= {⟨case⟩} lowercase | title case all | title case first

The expansion can be printed in one of these three cases. The default printing happens
in lowercase.

expansion case

= {⟨glossary style⟩} block | inline

The package offers two styles. The inline style prints the glosses and their expansions
without page numbers in the flowing text, whereas the block style, in default settings
prints them in a multicolumn block with an unnumbered section with the glossary name.

style

8

= {⟨number of columns⟩} 2

The block style of glosses is printed in multicolumn layout by default. If the number of
columns has to be adjusted, this key shall be used. The default value of it is 2. It works
with only one column too.

columns

= {⟨truth value⟩} true | false

By default, page numbers on which a particular gloss was used are printed in the block
style. This can be turned off with this bool key.

page numbers

= {⟨section level⟩} section

In block style, a section heading is printed. In order to choose the level of sectioning,
this command can be used. The default is section which can be changed to any other
desired level. In addition the key allows an option null which suppresses the use of any
section heading.

sectioning

= {⟨truth value⟩} true | false

By default, the section number for the glossary is turned off, but if one wants to print it,
this bool key can be used with the true value.

section number

= {⟨truth value⟩} true | false

Generally, the glosses are printed in bold inside glossary. Some fonts don’t have bold
small caps (e.g., Latin Modern). If you need to stick to them, you can use this inverse
bool key with true value in order to obtain non-bold glosses.

no bold

= {⟨separator between glosses or expansions⟩}

This is a meta key. If used with \glx, then it sets the separator between the glosses (,␣
is the default). If used with \glx*, it sets the separator between the expansions (,␣ is
the default) and if used with the \listofglosses, it sets the separator between glosses
and their expansions (:␣ is the default).

separator

= {⟨separator between pairs of glosses and expansions⟩}

Each pair of gloss and its expansion is separated using a token list controlled by this list.
The default is \par.

entry separator

9 LinguisTiX-ipa LATEX3-interface | Implementation

This package sets the fonts exclusively for the IPA. The commands provided for switching
to the IPA control all serif, sans serif and typewriter families. This package can be loaded
standalone for loading IPA fonts as well as some switch commands useful in running
text. New Computer Modern provides a special stylistic set dedicated for linguistics. It
is enabled for IPA fonts automatically with this package. Only the legally marked up
IPA is affected by the customisation provided by this package. For switching to the IPA,
LinguisTiX-ipa provides one command with a starred variant.

9

{⟨phonetic transcription⟩}
{⟨phonemic transcription⟩}
This is a command that resembles with the TIPA command \textipa. I have deliberately
kept it distinct from it so that just in case somebody wants to use their old TIPA
code in a Unicode document, the commands won’t clash (I highly discourage doing
this, though). The command comes with a starred variant. The behaviour of the un-
starred command is to print the argument in brackets for phonetic transcription, e.g.:
\ipatext{aɪ̯ pʰiː eɪ}̯⟶ [aɪ ̯ pʰiː eɪ]̯ whereas the starred version prints it in slashes for
phonemic transcription, e.g.: \ipatext*{aɪ̯ pʰiː eɪ}̯⟶ /aɪ ̯ pʰiː eɪ/̯.

\ipatext
\ipatext*

Suppose someone just wants to load the font without the brackets or slashes, they can
use the following command for switching to the IPA without adding the aforementioned.

This also is a command that switches to the IPA-only features (default as well as user
added). This command, of course, leaks and that’s why should be delimited. E.g., the
following code lines produce [aɪ ̯ pʰiː eɪ]̯ and /aɪ ̯ pʰiː eɪ/̯ respectively:

{\lngxipa [aɪ̯ pʰiː eɪ]̯}
{\lngxipa /aɪ̯ pʰiː eɪ/̯}

\lngxipa

These keys reset the IPA-only fonts to New Computer Modern. They can be used even for
resetting to New Computer Modern from another IPA font. In order to change or reset
to the IPA defaults these keys can be used. They store the names of the New Computer
Modern font family in the variables concerning IPA. The keys that contain regular in
their name use the regular version of New Computer Modern that matches the colour of
Latin Modern.

ipa newcm
ipa newcm sans
ipa newcm mono
ipa newcm regular
ipa newcm regular sans
ipa newcm regular mono

Let’s now see the combined table of font keys provided by both LinguisTiX-fonts
and LinguisTiX-ipa.

Family LinguisTiX-fonts LinguisTiX-ipa

Serif text main font ipa main font
text upright ipa upright
text upright features ipa upright features
text bold upright ipa bold upright
text bold upright features ipa bold upright features
text italic ipa italic
text italic features ipa italic features
text bold italic ipa bold italic
text bold italic features ipa bold italic features
text slanted ipa slanted
text slanted features ipa slanted features
text bold slanted ipa bold slanted
text bold slanted features ipa bold slanted features
text swash ipa swash
text swash features ipa swash features

Continued on the next page…

10

Family LinguisTiX-fonts LinguisTiX-ipa

text bold swash ipa bold swash
text bold swash features ipa bold swash features
text small caps ipa small caps
text small caps features ipa small caps features

Sans serif text sans font ipa sans font
text sans upright ipa sans upright
text sans upright features ipa sans upright features
text sans bold upright ipa sans bold upright
text sans bold upright features ipa sans bold upright features
text sans italic ipa sans italic
text sans italic features ipa sans italic features
text sans bold italic ipa sans bold italic
text sans bold italic features ipa sans bold italic features
text sans slanted ipa sans slanted
text sans slanted features ipa sans slanted features
text sans bold slanted ipa sans bold slanted
text sans bold slanted features ipa sans bold slanted features
text sans swash ipa sans swash
text sans swash features ipa sans swash features
text sans bold swash ipa sans bold swash
text sans bold swash features ipa sans bold swash features
text sans small caps ipa sans small caps
text sans small caps features ipa sans small caps features

Monospaced text mono font ipa mono font
text mono upright ipa mono upright
text mono upright features ipa mono upright features
text mono bold upright ipa mono bold upright
text mono bold upright features ipa mono bold upright features
text mono italic ipa mono italic
text mono italic features ipa mono italic features
text mono bold italic ipa mono bold italic
text mono bold italic features ipa mono bold italic features
text mono slanted ipa mono slanted
text mono slanted features ipa mono slanted features
text mono bold slanted ipa mono bold slanted
text mono bold slanted features ipa mono bold slanted features
text mono swash ipa mono swash
text mono swash features ipa mono swash features
text mono bold swash ipa mono bold swash
text mono bold swash features ipa mono bold swash features
text mono small caps ipa mono small caps
text mono small caps features ipa mono small caps features

End of the table…

Table 1: Font keys provided by LinguisTiX-fonts and LinguisTiX-ipa

Apart from these, both the packages provide the following keys for appending to the

11

extra features for the respective fonts:

• text extra features

• text sans extra features

• text mono extra features

• ipa extra features

• ipa sans extra features

• ipa mono extra features

10 LinguisTiX-languages LATEX3-interface | Implementation

This package is intended to provide support for loading Unicode fonts as well as other
necessary settings for using languages. It is a wrapper around the babel package, but it
provides some other useful settings which babel doesn’t agree to add. This package is a
little opinionated and pushes for ‘modern’ practices e.g., Unicode, LuaLATEX, no-markup
multilingual text etc. As of now, only a little support is available. If you want your
language to be supported, you can ask for support at the bug tracker of the repository or
you can send an email in the public mailing list for the project. You may subscribe to the
mailing list at: mail.gnu.org.ua/mailman/listinfo/linguistix-languages. Here, I
list down some LATEX-aspects that may demand some modifications in the default settings.

Fonts: The package works with Unicode and does not worry about legacy methods. If
you want support for your language, first and foremost, you should let me know
standard OpenType fonts suitable for your language. Note that they should be
freely licensed. I won’t support proprietary software with LinguisTiX.

babel support: As mentioned before, the package adds on to the support provided by
package babel. So check if the language files – specifically the modern .ini files – have
the correct settings. Sometimes they may need to undergo native-speakers scrutiny.
Whatever is wrong in babel, may not get corrected in LinguisTiX.

Numbers: LATEX uses a lot of counters and all of them, by default, print Latin nu-
merals/characters. E.g., \arabic{page} prints the page number in Latin, but
\roman{page} prints the same in Roman convention, i.e., ‘i, ii, …’. Does your
language allow them? E.g., Greek doesn’t like Latin alphabets, but doesn’t mind
Roman numerals. Instead of Latin alphabets, Greek prefers to use its own numeral
system. Marathi doesn’t like any of these, but it doesn’t have alternative forms
of numeration, so it changes certain cases drastically. E.g., in nested enumerate
environment, Marathi renews the printing of nested \items as 1, 1.1, 1.1.1 and 1.1.1.1.
This is reset to defaults when the language is changed. Keeping this in mind, I am
listing down some places where I found non-native numbering (I might have missed
something in which case it deserves to be reported as a bug, so feel free to do so!).

1. Page numbers (in front matter, main matter).
2. Part numbers.
3. Second, third and fourth levels of enumeration.

12

mail.gnu.org.ua/mailman/listinfo/linguistix-languages

ExPex: Labels provided by ExPex package (see: tex.stackexchange.com/a/548668).

Typography: Language-specific conventions like using Italic for emphasis. It is a Latin-
script specific convention (note that I don’t mean slanted when I say Italic). Different
languages have different conventions of emphasising (e.g., Marathi uses bold font
for emphasis).

Miscellaneous: Anything other than these.

I am very much willing to support multilingual typesetting for multiple languages,
but I need to know the things mentioned in this list in order to provide the best suited
output. Please consider submitting a detailed feature request. The documentation of
supported languages is in separate PDFs. This documentation only describes the user-side
commands provided by the package.

{⟨list of languages⟩}
{⟨list of languages⟩}

This key works with the central key-parser of LinguisTiX, i.e., \linguistix. It accepts
one argument that is a list of languages user wants to load. Unlike babel, the first element
of this list is set as the main language for the document. The command \loadlanguages
has the identical behaviour. In fact, it is a wrapper around the key.

languages
\loadlanguages

{⟨language options⟩} {⟨language name⟩}

This is a wrapper command over \babelprovide. The first argument is passed to the
optional argument of \babelprovide and the second one to the mandatory argument of
the same. For more information, please read babel’s manual.

Languages supported by LinguisTiX-languages are loaded with a package with that
language’s name. If it is absent, the package produces a warning.

\providelanguage

= {⟨strict/logical/off⟩}

Many languages need native digits. Adding them in a multilingual document is quite
complicated. This key sets the plugs provided for the socket of the same name. Language
packages already take care of them, but if you want to change anything mid-document,
you can use this key. It has three choices available as its value as seen below.

native numbering

The ‘strict’ plug changes the \lngx_counter:n command to the counter of the main
language of the document. That way all the counters are printed in the main language.

strict

13

tex.stackexchange.com/a/548668

This plug changes the meaning of \lngx_counter:n to the \localecounter command
provided by babel. It picks up the surrounding language and uses its native digits. E.g.,
when Marathi is being typeset, it will print counters in Marathi. When it is changed to
English, it will start printing the same in English. Note that this will reflect in table
of contents/tables/figures too. It is called logical numbering because it obeys TEX’s
logic more than what is generally considered the standard. E.g., imagine you have an
English section followed by a Marathi section on the same page. Both of them will follow
their own numerals for default TEX counters. Since both of them are on the same page,
while shipping out, the last active language will be used for processing the page number
(Marathi in this case). This creates a table of contents with Latin numeral as the section
counter, but Marathi numeral as the page number. Only experiments can determine if an
option like this can have valid use-cases, so it is provided. If you use it, be aware that the
results might not be the most pleasant to your aesthetic values. They are so because of
the logic of TEX.

logical

It is equivalent of the noop plug when the other two are not used at all. It is only required
when you want to go back to LATEX defaults. E.g., if you have turned strict native
numbering in some language and you want it to go back to LATEX defaults, you may use
this.

off

11 LinguisTiX-logos LATEX3-interface | Implementation

This is a small package that provides commands for printing logos of the LinguisTiX
bundle. The logo is printed in New Computer Modern Uncial font. It uses purple colour
for the ‘X’ in it and it is defined using l3color module. It provides one command that
takes an optional argument. Obviously it is ‘protected’. It is as follows:

[⟨package name⟩]

The logo of the ⟨package name⟩ from the LinguisTiX bundle is printed with this command,
e.g., \lngxlogo[fonts]⟶LinguisTiX-fonts.

\lngxlogo

Sometimes, the logos might be required to be used in an expandable way, but
optional arguments are not supported in expandable commands. Thus we create separate
commands for separate packages. Even these ones have the lngx prefix. It is followed
by the package name, e.g., fonts or ipa and finally the suffix logo. In the context of
hyperref, their behaviour is different than in the context of normal text.

12 LinguisTiX-nfss LATEX3-interface | Implementation

This is an extension package to the existing NFSS scheme of LATEX. The NFSS mainly
works on the four facets of the text.

1. Encoding

2. Family

3. Shape

14

4. Series

These facets are reset to default by the \normalfont and \selectfont commands.
These commands work on some internals that are reset with every usage of some commands
that set them, e.g., \rmfamily, \bfseries. There isn’t any way to control this unless
some internals are touched and there might be incidences where one does want to control
them, e.g., try compiling the following code in LuaLATEX.

\documentclass{article}

\begin{document}
\makeatletter
\fontencoding{OT1}\sffamily\itshape\bfseries
\selectfont
\f@encoding\ | \f@family\ | \f@series\ | \f@shape\quad
\normalfont
\f@encoding\ | \f@family\ | \f@series\ | \f@shape
\end{document}

As can be seen in the output, the first line shows the text in OT1 encoding, sans family,
bold series and Italic shape. After \normalfont, every aspect of the text is reset to the
default one. The default encoding is TU. We can see TU instead of OT1 after \normalfont.
So is the case with family (default: \rmfamily), series (default: \mdseries) and shape
(default: \upshape). This usually is okay, but sometimes it doesn’t fit the requirement.
E.g., the following might be used with the intention of switching from the IPA font to the
text font, but as can be seen, it doesn’t really change anything.

\documentclass{article}
\usepackage{linguistix-fonts}
\usepackage{linguistix-ipa}
\linguistix{%
text upright = {KpRoman-Regular.otf},%
text upright features = {Color={green}},%
ipa upright = {KpSans-Regular.otf},%
ipa upright features = {Color={red}}%

}

\begin{document}
test \lngxipa test \normalfont test
\end{document}

The reason for this is the way \lngxipa is defined. It resets \rmdefault, \sfdefault
and \ttdefault and uses \normalfont to initialise this new super font family (see:
https://tex.stackexchange.com/a/729805). Setting a ‘super’ font family effectively
changes the behaviour of \normalfont permanently. By the way, this is not just something
that LinguisTiX has to deal with. This situation may arise whenever one wants to have

15

https://tex.stackexchange.com/a/729805

a font family command that sets all serif, sans serif and monospaced font families.
LinguisTiX-nfss is useful in such cases. It introduces the concept of ‘super’ font family. It
shouldn’t be confused with LATEX2𝜀’s ‘meta’ font family. It refers to rm, sf or tt in the
kernel. This package provides control over these facets. Let’s have a look at the macros it
provides.

{⟨encoding⟩} {⟨true code⟩} {⟨false code⟩}
{⟨encoding⟩} {⟨true code⟩}
{⟨encoding⟩} {⟨false code⟩}

If the current encoding matches with the given ⟨encoding⟩, it selects the true branch;
false otherwise. The \CurrentEncoding macro expands to the current encoding.

\IfEncodingTF ⋆
\IfEncodingT ⋆
\IfEncodingF ⋆
\CurrentEncoding ⋆

{⟨meta family⟩} {⟨true code⟩} {⟨false code⟩}
{⟨meta family⟩} {⟨true code⟩}
{⟨meta family⟩} {⟨false code⟩}

If the current meta family matches with the given ⟨meta family⟩, it selects the true
branch; false otherwise. The \CurrentMetaFamily macro expands to the current meta
family.

\IfMetaFamilyTF ⋆
\IfMetaFamilyT ⋆
\IfMetaFamilyF ⋆
\CurrentMetaFamily ⋆

{⟨super family⟩} {⟨true code⟩} {⟨false code⟩}
{⟨super family⟩} {⟨true code⟩}
{⟨super family⟩} {⟨false code⟩}

If the current super family matches with the given ⟨super family⟩, it selects the true
branch; false otherwise. The \CurrentSuperFamily macro expands to the current super
family.

\IfSuperFamilyTF ⋆
\IfSuperFamilyT ⋆
\IfSuperFamilyF ⋆
\CurrentSuperFamily ⋆

{⟨series⟩} {⟨true code⟩} {⟨false code⟩}
{⟨series⟩} {⟨true code⟩}
{⟨series⟩} {⟨false code⟩}

If the current series matches with the given ⟨series⟩, it selects the true branch and false
otherwise. The \CurrentSeries macro expands to the current series.

\IfSeriesTF ⋆
\IfSeriesT ⋆
\IfSeriesF ⋆
\CurrentSeries ⋆

{⟨shape⟩} {⟨true code⟩} {⟨false code⟩}
{⟨shape⟩} {⟨true code⟩}
{⟨shape⟩} {⟨false code⟩}

If the current series matches with the given ⟨shape⟩, it selects the true branch and false
otherwise. The \CurrentShape macro expands to the current shape.

\IfShapeTF ⋆
\IfShapeT ⋆
\IfShapeF ⋆
\CurrentShape ⋆

{⟨family ID⟩} {⟨rm={⟨rm NFSS⟩},sf={⟨sf NFSS⟩},tt={⟨tt NFSS⟩}⟩}

Every super font family has a ⟨family ID⟩, even the default one (i.e., default). This
command creates a super family with the given ⟨family ID⟩s. The ⟨meta family keys⟩
argument accepts a list of specific keys, rm, sf and tt. They take the NFSS family names
of these meta families as arguments. One may define a font with, say, \newfontfamily,
pass the NFSSkeys={⟨key⟩} option to it and use the ⟨key⟩ in the suitable ⟨meta family
key⟩. Note that using all these keys is not mandatory. A super family may have ≤ 3 keys.

\superfontfamily

16

{⟨ID⟩}{⟨encoding,family,series,shape⟩}
{⟨ID⟩}
{⟨ID⟩}

These commands loads the super font family with the given ⟨ID⟩. The attributes listed in
the second argument are the only choices available. The required super font family is loaded
and the listed attributes are reset to the ones that were active before. All the four are not
required. The number of attributes may be ≤ 4. The \softernormalfont command ex-
cludes encoding and reactivates all the other attributes, whereas the \softestnormalfont
command reactivates all of them.

\softsuperfontfamily
\softersuperfontfamily
\softestsuperfontfamily

{⟨encoding,family,series,shape⟩}

Similar to \softsuperfontfamily and friends, these commands switch back to the default
super font family, but reactivate the previously active font attributes. The argument to
\softnormalfont takes the list of the required font attributes. It can have ≤ 4 values.
Now try the following example:

\softnormalfont
\softernormalfont
\softestnormalfont

\documentclass{article}
\usepackage{linguistix}
\linguistix{%
text upright features = {Color={green}},%
ipa upright features = {Color={red}}%

}

\begin{document}
test \lngxipa test \softernormalfont test\par
\makeatletter
\sffamily\itshape\bfseries
\f@family\ | \f@series\ | \f@shape\quad
\softnormalfont{series}
\f@family\ | \f@series\ | \f@shape
\end{document}

Better? :-)

LATEX3 interface for programmers
In this section, we take a look at the public LATEX3 commands of the bundle. These can
be considered stable and can be used in production code.

LinguisTiX-base Documentation | Implementation

⟨keyval list⟩

This is the base command for \linguistix. It takes a comma separated list of ⟨keyval
list⟩ and parses it.

\lngx_set_keys:n

17

LinguisTiX-fixpex Documentation | Implementation

No LATEX3 function provided by this package.

LinguisTiX-fonts Documentation | Implementation

These are the two booleans that are used to check if the old style numbers, the old style
one (i.e., ‘1’) and Bourbaki’s emtpy set symbol (i.e., ‘∅’) is asked by the user.

\g_lngx_old_style_bool
\g_lngx_old_style_one_bool
\g_lngx_bourbaki_bool

{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
{⟨features⟩} {⟨font⟩}
These commands take two arguments, retrieve the values of the data variables if :VV
variants are used. These are wrapper commands around the font-setting commands
of fontspec and unicode-math, i.e., \setmainfont, \setsansfont, \setmonofont and
\setmathfont. The ⟨features⟩ are passed to the optional argument and the ⟨font⟩ is
passed to the mandatory argument of the respective command from the aforementioned
list.

\lngx_set_main_font:nn
\lngx_set_main_font:VV
\lngx_set_sans_font:nn
\lngx_set_sans_font:VV
\lngx_set_mono_font:nn
\lngx_set_mono_font:VV
\lngx_set_math_font:nn
\lngx_set_math_font:VV

{⟨language⟩} {⟨features⟩} {⟨font⟩}
{⟨language⟩} {⟨features⟩} {⟨font⟩}
{⟨language⟩} {⟨features⟩} {⟨font⟩}
These commands take three arguments. These are wrapper commands around the font-
setting commands of babel. The ⟨features⟩ are passed to the optional argument and
the ⟨font⟩ is passed to the mandatory argument of the respective command from the
aforementioned list.

\lngx_other_main_font:nnn
\lngx_other_main_font:nee
\lngx_other_sans_font:nnn
\lngx_other_sans_font:nee
\lngx_other_mono_font:nnn
\lngx_other_mono_font:nee

LinguisTiX-glossing Documentation | Implementation

{⟨gloss⟩}
{⟨expansion⟩}
This function is controlled by the key format. Its argument is the gloss or the expansion
itself. According to the definition set in the key, the argument gets printed.

\lngx_gloss_format:n
\lngx_expansion_format:n

{⟨gloss⟩} {⟨expansion⟩}

This function creates a new gloss. It is later equated with the \newgloss command.
\lngx_gloss_new:nn

This functions prints the list of glosses and is equated with \listofglosses.\lngx_gloss_list:

{⟨section title⟩}

This environment reads an integer variable, i.e., \l__lngx_glossary_columns_int. It
is controlled by the columns key. If its number is more than one (which, by default is
more than one), the multicols environment is used around the content that comes in
between, or else no action is taken. It takes one compulsory argument, i.e., the content of
the section title material. This environment should not be used outside this package.

lngx_multicols

18

LinguisTiX-ipa Documentation | Implementation

This package provides a few wrapper functions around fontspec’s commands.

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the serif variants. The ⟨font⟩ is set with ⟨features⟩
for the serif IPA. The command to switch to this family is \lngx_main_ipa:. It can be
accessed with the NFSS family lngx_ipa_rm_nfss.

\lngx_set_main_ipa_font:nn
\lngx_set_main_ipa_font:VV
\lngx_main_ipa:
lngx_ipa_rm_nfss

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the sans variants. The ⟨font⟩ is set with ⟨features⟩
for the sans IPA. The command to switch to this family is \lngx_sans_ipa:. It can be
accessed with the NFSS family lngx_ipa_sf_nfss.

\lngx_set_sans_ipa_font:nn
\lngx_set_sans_ipa_font:VV
\lngx_sans_ipa:
lngx_ipa_sf_nfss

{⟨features⟩} {⟨font⟩}

These functions set the IPA fonts for the mono variants. The ⟨font⟩ is set with ⟨features⟩
for the mono IPA. The command to switch to this family is \lngx_mono_ipa:. It can be
accessed with the NFSS family lngx_ipa_nfss_nfss.

\lngx_set_mono_ipa_font:nn
\lngx_set_mono_ipa_font:VV
\lngx_mono_ipa:
lngx_ipa_tt_nfss

The \lngx_ipa: command loads the super family lngx_ipa (see the documentation of
LinguisTiX-nfss). The \lngx_ipa: function has a user-side command \lngxipa too.

\lngx_ipa:
lngx_ipa

LinguisTiX-languages Documentation | Implementation

Here are the L3 functions defined for LinguisTiX-languages.

A tl that globally stores the main language of the document.\g_lngx_main_language_tl

A clist that globally stores the languages that are used.\g_lngx_languages_clist

{⟨language options⟩} {⟨language name⟩}
⟨language options tl⟩ ⟨language tl⟩
These functions read the V-type argument provided to them and pass it to the
\babelprovide command for loading languages.

\lngx_languages:nn
\lngx_languages:VV

{⟨list of languages⟩}

This function loads the languages in LinguisTiX sense.
\lngx_load_languages:n

This is a developers function provided for printing the counter based on the plug selected.
It changes the meaning according to the active value of native-numbering socket.

\lngx_counter:n

This function resets a lot of custom settings done by some languages. It has to be used
inside \addto macro provided by the babel package.

\lngx_misc_reset:

19

LinguisTiX-logos Documentation | Implementation

There are only two LATEX3 functions provided by this package.

This function switches to the New Computer Modern Uncial font family.\lngx_logo_font:

I don’t like the default purple colour of the xcolor package (i.e.,). Thus I have created
a new colour using l3color module. It can be accessed using this variable. The color looks
like: .

lngx_purple_color

LinguisTiX-nfss Documentation | Implementation

This subsection discusses the programming interface LinguisTiX-nfss provides.

These tls expand to the default values of the fonts set at the begindocument/end
hook. These are not supposed to be changed and hence they are set with the c prefix.

\c_lngx_default_rmdefault_tl ⋆
\c_lngx_default_sfdefault_tl ⋆
\c_lngx_default_ttdefault_tl ⋆

These tls expand to the current values of encoding, meta family, super family,
series and shape respectively. Note that these are updated time to time by the
commands that change them (package-internal or LATEX-internal).

\l_lngx_current_encoding_tl ⋆
\l_lngx_current_meta_family_tl ⋆
\l_lngx_current_super_family_tl ⋆
\l_lngx_current_series_tl ⋆
\l_lngx_current_shape_tl ⋆

{⟨encoding⟩}
{⟨encoding⟩}{⟨true code⟩}{⟨false code⟩}
{⟨meta font family⟩}
{⟨meta font family⟩}{⟨true code⟩}{⟨false code⟩}
{⟨super font family⟩}
{⟨super font family⟩}{⟨true code⟩}{⟨false code⟩}
{⟨series⟩}
{⟨series⟩}{⟨true code⟩}{⟨false code⟩}
{⟨shape⟩}
{⟨shape⟩}{⟨true code⟩}{⟨false code⟩}

\lngx_if_encoding_p:n ⋆
\lngx_if_encoding:nTF ⋆
\lngx_if_meta_family_p:n ⋆
\lngx_if_meta_family:nTF ⋆
\lngx_if_super_family_p:n ⋆
\lngx_if_super_family:nTF ⋆
\lngx_if_series_p:n ⋆
\lngx_if_series:nTF ⋆
\lngx_if_shape_p:n ⋆
\lngx_if_shape:nTF ⋆

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

\lngx_if_meta_family_rm_p: ⋆
\lngx_if_meta_family_rm:TF ⋆
\lngx_if_meta_family_sf_p: ⋆
\lngx_if_meta_family_sf:TF ⋆
\lngx_if_meta_family_tt_p: ⋆
\lngx_if_meta_family_tt:TF ⋆

These conditionals select the true branch if the rm, sf, tt families (respectively) are active,
false otherwise.

20

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

These conditionals select the true branch if the md, bf series (respectively) are active,
false otherwise.

\lngx_if_series_md_p: ⋆
\lngx_if_series_md:TF ⋆
\lngx_if_series_bf_p: ⋆
\lngx_if_series_bf:TF ⋆

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}

{⟨true code⟩}{⟨false code⟩}
These conditionals select the true branch if the up, it, sc, ssc, sl, sw, ulc shapes
(respectively) are active, false otherwise.

\lngx_if_shape_up_p: ⋆
\lngx_if_shape_up:TF ⋆
\lngx_if_shape_it_p: ⋆
\lngx_if_shape_it:TF ⋆
\lngx_if_shape_sc_p: ⋆
\lngx_if_shape_sc:TF ⋆
\lngx_if_shape_ssc_p: ⋆
\lngx_if_shape_ssc:TF ⋆
\lngx_if_shape_sl_p: ⋆
\lngx_if_shape_sl:TF ⋆
\lngx_if_shape_sw_p: ⋆
\lngx_if_shape_sw:TF ⋆
\lngx_if_shape_ulc_p: ⋆
\lngx_if_shape_ulc:TF ⋆

{⟨family ID⟩} {⟨rm={⟨rm NFSS⟩},sf={⟨sf NFSS⟩},tt={⟨tt NFSS⟩}⟩}

This function takes an ⟨ID⟩ and sets the rm, sf, tt values as requested by the user and
creates a super font family.

\lngx_super_font_family:nn

{⟨ID⟩}{⟨encoding,family,series,shape⟩}
{⟨ID⟩}
{⟨ID⟩}

\lngx_soft_super_font_family:nn
\lngx_softer_super_font_family:n
\lngx_softest_super_font_family:n

The \lngx_soft_super_font_family:nn sets super family marked by the ⟨ID⟩ and
reactivates the currently active font attributes listed in the second argument. The other
two do the same, but without the list. the softer one omits the encoding and the
softest one reactivate all of them.

{⟨ID⟩}

Quite similar to the soft super family functions, these ones set the default font family and
reactivate the font attributes. The soft one sets the attributes listed in the argument.
The softer one omits encoding and reactivates the rest and the softest one reactivates
all.

\lngx_soft_normal_font:n
\lngx_softer_normal_font:
\lngx_softest_normal_font:

21

Implementation
In this section the code of this bundle is documented. Each package in the bundle is
documented in a separate subsection.

LinguisTiX

Provide the package with its basic information.
1 ⟨∗package⟩
2 \ProvidesExplPackage{linguistix}
3 {2026-01-19}
4 {v0.7}
5 {%
6 The ‘LinguisTiX’ bundle: Enhanced
7 support for linguistics.%
8 }

When one loads LinguisTiX, all the packages of the bundle are loaded automatically.
That’s the only content of the umbrella package LinguisTiX. All the packages are loaded
conditionally (i.e., only if not loaded already).

9

10 \IfPackageLoadedF { linguistix-base } {
11 \RequirePackage { linguistix-base }
12 }
13 \IfPackageLoadedF { linguistix-fonts } {
14 \RequirePackage { linguistix-fonts }
15 }
16 \IfPackageLoadedF { linguistix-glossing } {
17 \RequirePackage { linguistix-glossing }
18 }
19 \IfPackageLoadedF { linguistix-ipa } {
20 \RequirePackage { linguistix-ipa }
21 }
22 \IfPackageLoadedF { linguistix-languages } {
23 \RequirePackage { linguistix-languages }
24 }
25 \IfPackageLoadedF { linguistix-leipzig } {
26 \RequirePackage { linguistix-leipzig }
27 }
28 \IfPackageLoadedF { linguistix-logos } {
29 \RequirePackage { linguistix-logos }
30 }
31 \IfPackageLoadedF { linguistix-nfss } {
32 \RequirePackage { linguistix-nfss }
33 }
34 ⟨/package⟩

22

LinguisTiX-base Documentation | LATEX3-interface

Set the essentials of the package.
35 ⟨∗base⟩
36 \ProvidesExplPackage{linguistix-base}
37 {2026-01-19}
38 {v0.7}
39 {%
40 The base package of the ‘LinguisTiX’
41 bundle.%
42 }

\lngx_set_keys:n I use the l3keys module of LATEX3 for creating the key-values used in this bundle. In order
to get a singleton parser for all the packages of the bundle, I have create this parsing
command that is used throughout the bundle.

43

44 \cs_new_protected:Npn \lngx_set_keys:n #1 {
45 \keys_set:nn { lngx_keys } { #1 }
46 }

(End of definition for \lngx_set_keys:n. This function is documented on page 17.)

\linguistix I equate this command with a user-side macro here and end the LinguisTiX-base package.
47

48 \cs_gset_eq:NN \linguistix \lngx_set_keys:n
49 ⟨/base⟩

(End of definition for \linguistix. This function is documented on page 5.)

23

LinguisTiX-fixpex Documentation | LATEX3-interface

The unicode-math defines \gla which clashes with the same command defined by the
expex package. Of course, the expex-\gla is more relevant in linguistics. Thus I will save
that and provide a new command for the unicode-math-\gla. This is not relevant to
people who are not using expex. Thus, the settings are loaded only conditionally.

50 ⟨∗fixpex⟩
51 \ProvidesExplPackage{linguistix-fixpex}
52 {2026-01-19}
53 {v0.7}
54 {%
55 The base package of the ‘LinguisTiX’
56 bundle.%
57 }

This package is useful only if either expex or unicode-math is loaded. Otherwise, it is of
no use. Thus, I create a message when either of them is not loaded.

58

59 \msg_new:nnn { fixpex } { pkg_not_loaded } {
60 The~ ‘LinguisTiX-fixpex’~ package~ is~ a~ first-aid~
61 for~ resolving~ the~ conflict~ between~ ‘unicode-math’~
62 and\\ ‘expex’.~ It~ should~ only~ be~ used~ if~ at~ least~
63 one~ of~ the\\ two~ is~ loaded.~ Here~
64 ‘LinguisTiX-fixpex’~ can~\\ be~ omitted~ since~ you~ are~
65 not~ using~ ‘#1’.
66 }

I first start the hook begindocument/before.
67

68 \hook_gput_code:nnn { begindocument / before } { . } {

The unicode-math package defines \gla after \begin{document}, so the fix needs to be
added after that is done. For that, I start the begindocument/end hook.

69 \IfPackageLoadedTF { expex } {
70 \IfPackageLoadedTF { unicode-math } {
71 \hook_gput_code:nnn { begindocument / end } { . } {

\umgla This replicates the unicode-math-\gla for future use.
72 \cs_gset_eq:NN \umgla \gla

(End of definition for \umgla. This function is documented on page 5.)
The expex-\gla is then equated to the internal function of the package that does the
actual function (Munn and Gregorio 2023).

73 \cs_gset_eq:NN \gla \glw@gla
74 }

In the false branch of unicode-math, I issue an info message that is not visible on the
terminal, but is printed in the log file.

75 } {
76 \msg_info:nnn { fixpex } { pkg_not_loaded } {
77 unicode-math
78 }
79 }

24

Similarly, I do it for expex.
80 } {
81 \msg_info:nnn { fixpex } { pkg_not_loaded } {
82 expex
83 }
84 }
85 }
86 ⟨/fixpex⟩

25

LinguisTiX-fonts Documentation | LATEX3-interface

Package essentials first.
87 ⟨∗font⟩
88 \ProvidesExplPackage{linguistix-fonts}
89 {2026-01-19}
90 {v0.7}
91 {%
92 The font-assistant package of the
93 ‘LinguisTiX’ bundle.%
94 }

I load LinguisTiX-base and unicode-math (if they are not already loaded).
95

96 \IfPackageLoadedF { linguistix-base } {
97 \RequirePackage { linguistix-base }
98 }
99

100 \IfPackageLoadedF { unicode-math } {
101 \RequirePackage { unicode-math }
102 }
103

104 \IfPackageLoadedF { linguistix-fixpex } {
105 \RequirePackage { linguistix-fixpex }
106 }

\LaTeX
\ogLaTeX

We save the original code for the \LaTeX logo and then renew the command.
107

108 \NewCommandCopy \ogLaTeX \LaTeX
109

110 \RenewDocumentCommand \LaTeX { } {%
111 L\kern-.81ex\relax
112 \raisebox{.6ex}{\textsc{a}}\kern-.23ex\relax
113 \hbox{T}\kern-.4ex\relax
114 \raisebox{-.5ex}{E}\kern-.3ex\relax
115 X%
116 }

(End of definition for \LaTeX and \ogLaTeX. These functions are documented on page 5.)

old style numbers
\g_lngx_old_style_bool

old style one
\g_lngx_old_style_one_bool

bourbaki's empty set
\g_lngx_bourbaki_bool

I use the .bool_gset:N key-type of l3keys for developing these boolean keys.
117

118 \keys_define:nn { lngx_keys } {
119 old~ style~ numbers
120 .bool_gset:N = {
121 \g_lngx_old_style_bool
122 },
123 old~ style~ one
124 .bool_gset:N = {
125 \g_lngx_old_style_one_bool
126 },
127 bourbaki's~ empty~ set
128 .bool_gset:N = {
129 \g_lngx_bourbaki_bool
130 }

26

131 }

(End of definition for old style numbers and others. These functions are documented on page 6.)

\g__lngx_text_main_fonts_prop
\g__lngx_text_main_font_features_tl

text upright
text upright features

text bold upright
text bold upright features

text italic
text italic features

text bold italic
text bold italic features

text slanted
text slanted features

text bold slanted
text bold slanted features

text swash
text swash features

text bold swash
text bold swash features

text small caps
text small caps features

In the first few versions of the package, I used to save the font-names and their features
in token lists, but I found a better way to deal with this later which was using prop lists.
I had released the tls publicly (with a single _ after the scope marker), which means
ideally they should be available forever, but for performance and maintenance the newer
approach is much preferred and hence I decided to shift to prop lists from v0.6. This
time, I am correcting the mistake I made before. The prop lists that save the keys is
not public. It need not be. Only the key-value pairs are public. They are unchanged
anyway. This section describes the implementation of serif text fonts. All these keys
have a common pattern of code. For the convenience of maintenance, I have created a
comma-separated-list and used the elements of this list inside the common code. (See:
https://topanswers.xyz/tex?q=8074#a7689.)
132

133 \prop_gclear_new:N \g__lngx_text_main_fonts_prop
134 \tl_gclear_new:N \g__lngx_text_main_font_features_tl
135

136 \clist_map_inline:nn {
137 upright,
138 bold~ upright,
139 italic,
140 bold~ italic,
141 slanted,
142 bold~ slanted,
143 swash,
144 bold~ swash,
145 small~ caps
146 } {

All the keys here are prefixed with the word text in order to distinguish them from the
keys provided by the LinguisTiX-ipa package. The argument of these keys should be
expanded for which I use \prop_gput:Nne function. Each #1 is replaced by the items
from clist and the loop is repeated, whereas ##1 is the argument passed to the key by
user.

147 \keys_define:nn { lngx_keys } {
148 text~ #1
149 .code:n = {

I start a group first. Then clear and set a temporary string variable. I make the text of
the key titlecased as required by fontspec and remove the spaces. Lastly, the word Font
is appended. So, bold italic becomes BoldItalicFont.
150 \group_begin:
151 \str_clear:N \l_tmpa_str
152 \str_set:Ne \l_tmpa_str {
153 \text_titlecase_all:n { #1 }
154 Font
155 }
156 \str_replace_all:Nnn \l_tmpa_str { ~ } { }

The string is used inside the relevant prop-key and group is ended.
157 \prop_gput:Nne \g__lngx_text_main_fonts_prop
158 { text~ #1 }

27

https://topanswers.xyz/tex?q=8074#a7689

159 { \str_use:N \l_tmpa_str = { ##1 } }
160 \group_end:
161 },

Same is repeated for features.
162 text~ #1~ features
163 .code:n = {
164 \group_begin:
165 \str_clear:N \l_tmpa_str
166 \str_set:Ne \l_tmpa_str {
167 \text_titlecase_all:n { #1 }
168 Features
169 }
170 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
171 \prop_gput:Nne \g__lngx_text_main_fonts_prop
172 { text~ #1~ features }
173 {
174 \str_use:N \l_tmpa_str = { ##1 }
175 }
176 \group_end:
177 }
178 }
179 }

(End of definition for \g__lngx_text_main_fonts_prop and others. These functions are documented on page
10.)

text extra features This key adds to the property that stores the extra features for the serif fonts.
180

181 \keys_define:nn { lngx_keys } {
182 text~ extra~ features
183 .prop_gput:N = \g__lngx_text_main_fonts_prop
184 }

(End of definition for text extra features. This function is documented on page 12.)

28

\g__lngx_text_sans_fonts_prop
\g__lngx_text_sans_font_features_tl

\g__lngx_text_mono_fonts_prop
\g__lngx_text_mono_font_features_tl

text sans upright
text sans upright features

text sans bold upright
text sans bold upright features

text sans italic
text sans italic features

text sans bold italic
text sans bold italic features

text sans slanted
text sans slanted features

text sans bold slanted
text sans bold slanted features

text sans swash
text sans swash features

text sans bold swash
text sans bold swash features

text sans small caps
text sans small caps features

text mono upright
text mono upright features

text mono bold upright
text mono bold upright features

text mono italic
text mono italic features

text mono bold italic
text mono bold italic features

text mono slanted
text mono slanted features

text mono bold slanted
text mono bold slanted features

text mono swash
text mono swash features

text mono bold swash
text mono bold swash features

text mono small caps
text mono small caps features

Since the only difference between the upcoming keys is that of the word sans and mono,
we combine them together and use a nested clist. The rest of the mechanism is identical.

185

186 \prop_gclear_new:N \g__lngx_text_sans_fonts_prop
187 \tl_gclear_new:N \g__lngx_text_sans_font_features_tl
188

189 \prop_gclear_new:N \g__lngx_text_mono_fonts_prop
190 \tl_gclear_new:N \g__lngx_text_mono_font_features_tl
191

192 \clist_map_inline:nn {
193 sans,
194 mono
195 } {
196 \clist_map_inline:nn {
197 upright,
198 bold~ upright,
199 italic,
200 bold~ italic,
201 slanted,
202 bold~ slanted,
203 swash,
204 bold~ swash,
205 small~ caps
206 } {
207 \keys_define:nn { lngx_keys } {
208 text~ #1~ ##1
209 .code:n = {
210 \group_begin:
211 \str_clear:N \l_tmpa_str
212 \str_set:Ne \l_tmpa_str {
213 \text_titlecase_all:n { ##1 }
214 Font
215 }
216 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
217 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
218 { text~ #1~ ##1 }
219 { ####1 }
220 \group_end:
221 },
222 text~ #1~ ##1~ features
223 .code:n = {
224 \group_begin:
225 \str_clear:N \l_tmpa_str
226 \str_set:Ne \l_tmpa_str {
227 \text_titlecase_all:n { #1 }
228 Features
229 }
230 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
231 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
232 { text~ #1~ ##1~ features }
233 {
234 \str_use:N \l_tmpa_str = { ####1 }
235 }
236 \group_end:

29

237 }
238 }
239 }
240 \keys_define:nn { lngx_keys } {
241 text~ #1~ extra~ features
242 .prop_gput:c = {
243 g__lngx_text_ #1 _fonts_prop
244 }
245 }
246 }

(End of definition for \g__lngx_text_sans_fonts_prop and others. These functions are documented on page
11.)

\g__lngx_text_main_font_tl
\g__lngx_text_sans_font_tl
\g__lngx_text_mono_font_tl

text main font
text sans font
text mono font

These keys add the parameter that sets the main font for text. They set an internal token
list which is retrieved later by font setting command.
247

248 \clist_map_inline:nn {
249 main,
250 sans,
251 mono
252 } {
253 \keys_define:nn { lngx_keys } {
254 text~ #1~ font
255 .tl_gset:c = { g__lngx_text_ #1 _font_tl }
256 }
257 }

(End of definition for \g__lngx_text_main_font_tl and others. These functions are documented on page 10.)

\g__lngx_math_fonts_prop
\g__lngx_math_features_tl

\g__lngx_math_bold_fonts_prop
\g__lngx_math_bold_features_tl

math
math features

math bold
math bold features

The following are the keys set for math. They use the same mechanism as before.
258

259 \prop_gclear_new:N \g__lngx_math_fonts_prop
260 \tl_gclear_new:N \g__lngx_math_features_tl
261

262 \prop_gclear_new:N \g__lngx_math_bold_fonts_prop
263 \tl_gclear_new:N \g__lngx_math_bold_features_tl
264

265 \keys_define:nn { lngx_keys } {
266 math
267 .tl_gset:N = \g__lngx_math_font_tl,
268 math~ bold
269 .tl_gset:N = \g__lngx_math_bold_font_tl,
270 math~ features
271 .prop_gput:N = \g__lngx_math_fonts_prop,
272 math~ bold~ features
273 .prop_gput:N = \g__lngx_math_bold_fonts_prop
274 }

(End of definition for \g__lngx_math_fonts_prop and others. These functions are documented on page 6.)

newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families.
275

276 \keys_define:nn { lngx_keys } {

30

277 newcm
278 .meta:n = {
279 text~ main~ font = { NewCM10-Book.otf },
280 text~ sans~ font = { NewCMSans10-Book.otf },
281 text~ mono~ font = { NewCMMono10-Book.otf },
282 math = { NewCMMath-Book.otf },
283 math~ bold = { NewCMMath-Bold.otf }
284 }
285 }

(End of definition for newcm. This function is documented on page 6.)

newcm sans This is a .meta:n key that sets the default fonts to the sans family.
286

287 \keys_define:nn { lngx_keys } {
288 newcm~ sans
289 .meta:n = {
290 main~ font = { NewCMSans10-Book.otf },
291 sans~ font = { NewCMSans10-Book.otf },
292 mono~ font = { NewCMMono10-Book.otf },
293 math = { NewCMSansMath-Regular.otf },
294 math~ bold = { NewCMSansMath-Regular.otf }
295 }
296 }

(End of definition for newcm sans. This function is documented on page 6.)

newcm mono This is a .meta:n key that sets the default fonts to the monospaced family.
297

298 \keys_define:nn { lngx_keys } {
299 newcm~ mono
300 .meta:n = {
301 main~ font = { NewCMMono10-Book.otf },
302 sans~ font = { NewCMSans10-Book.otf },
303 mono~ font = { NewCMMono10-Book.otf },
304 math = { NewCMSansMath-Regular.otf },
305 math~ bold = { NewCMSansMath-Regular.otf }
306 }
307 }

(End of definition for newcm mono. This function is documented on page 6.)

newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.
308

309 \keys_define:nn { lngx_keys } {
310 newcm~ regular
311 .meta:n = {
312 main~ font = { NewCM10-Regular.otf },
313 sans~ font = { NewCMSans10-Regular.otf },
314 mono~ font = { NewCMMono10-Regular.otf },
315 math = { NewCMMath-Regular.otf },
316 math~ bold = { NewCMMath-Bold.otf }
317 }
318 }

31

(End of definition for newcm regular. This function is documented on page 6.)

newcm regular sans This is a .meta:n key that sets the default fonts to the regular sans variant of the New
Computer Modern family.
319

320 \keys_define:nn { lngx_keys } {
321 newcm~ regular~ sans
322 .meta:n = {
323 main~ font = { NewCMSans10-Regular.otf },
324 sans~ font = { NewCMSans10-Regular.otf },
325 mono~ font = { NewCMMono10-Regular.otf },
326 math = { NewCMMath-Regular.otf },
327 math~ bold = { NewCMMath-Bold.otf }
328 }
329 }

(End of definition for newcm regular sans. This function is documented on page 6.)

newcm regular mono This is a .meta:n key that sets the default fonts to the regular monospaced variant of
the New Computer Modern family.
330

331 \keys_define:nn { lngx_keys } {
332 newcm~ regular~ mono
333 .meta:n = {
334 main~ font = { NewCMMono10-Regular.otf },
335 sans~ font = { NewCMSans10-Regular.otf },
336 mono~ font = { NewCMMono10-Regular.otf },
337 math = { NewCMMath-Regular.otf },
338 math~ bold = { NewCMMath-Bold.otf },
339 }
340 }

(End of definition for newcm regular mono. This function is documented on page 6.)
Then we load the bourbaki's empty set boolean. This gets read later while setting

the math font.
341

342 \lngx_set_keys:n {
343 bourbaki's~ empty~ set,

Then we load the old style numbers boolean.
344 old~ style~ numbers,
345 newcm
346 }

\lngx_set_main_font:nn
\lngx_set_sans_font:nn
\lngx_set_mono_font:nn
\lngx_set_math_font:nn

If LinguisTiX-languages package is loaded, I load the fonts with \babelfont command.
In case it is not loaded, the fonts are set with \setxxxxcommand-type commands provided
by fontspec.
347

348 \IfPackageLoadedF { linguistix-languages } {
349 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
350 \setmainfont [#1] { #2 }
351 }
352 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
353 \setsansfont [#1] { #2 }

32

354 }
355 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
356 \setmonofont [#1] { #2 }
357 }
358 }

A wrapper command is provided for loading math fonts.
359

360 \cs_new_protected:Npn \lngx_set_math_font:nn #1#2 {
361 \setmathfont [#1] { #2 }
362 }

363

364 \cs_new_protected:Npn \lngx_set_math_bold_font:nn #1#2 {
365 \setmathfont [
366 #1,
367 version = { bold }
368] { #2 }
369 }

All of these commands should expand their arguments, so I provide the appropriate
variants.
370

371 \cs_generate_variant:Nn \lngx_set_main_font:nn { VV }
372 \cs_generate_variant:Nn \lngx_set_sans_font:nn { VV }
373 \cs_generate_variant:Nn \lngx_set_mono_font:nn { VV }
374 \cs_generate_variant:Nn \lngx_set_math_font:nn { VV }
375 \cs_generate_variant:Nn \lngx_set_math_bold_font:nn { VV }

(End of definition for \lngx_set_main_font:nn and others. These functions are documented on page 18.)

__lngx_build_main_font_features:
__lngx_build_sans_font_features:
__lngx_build_mono_font_features:
__lngx_build_math_font_features:

__lngx_build_bold_math_font_features:
\g__lngx_text_main_font_features_tl
\g__lngx_text_sans_font_features_tl
\g__lngx_text_mono_font_features_tl

\g__lngx_math_font_features_tl
\g__lngx_bold_math_font_features_tl

These are some internal functions that basically iterate on the prop list items and each of
them is put to the right of the respective token list. This way only the functions that are
added by the user are exported to the font setting command.
376

377 \clist_map_inline:nn {
378 main,
379 sans,
380 mono
381 } {
382 \cs_new_protected:cpn {
383 __lngx_build_ #1 _font_features:
384 } {
385 \prop_map_inline:cn { g__lngx_text_ #1 _fonts_prop } {
386 \tl_gput_right:cn {
387 g__lngx_text_ #1 _font_features_tl
388 } { ####2 }
389 }
390 }
391 }
392

393 \cs_new_protected:Npn __lngx_build_math_features: {
394 \prop_map_inline:Nn \g__lngx_math_fonts_prop {
395 \tl_gput_right:Nn \g__lngx_math_features_tl {
396 { ##2 }

33

397 }
398 }
399 }
400

401 \cs_new_protected:Npn __lngx_build_math_bold_features: {
402 \prop_map_inline:Nn \g__lngx_math_bold_fonts_prop {
403 \tl_gput_right:Nn \g__lngx_math_bold_features_tl {
404 { ##2 }
405 }
406 }
407 }

(End of definition for __lngx_build_main_font_features: and others.)
Now I start the pre-begindocument hook.
408

409 \hook_gput_code:nnn { begindocument / before } { . } {

If the boolean for old style numbers is true, I set the Numbers key to OldStyle. Similarly,
if the NewCM-specific old one is requested, I turn the character-variant on.

410 \lngx_set_keys:n {
411 text~ extra~
412 features = {
413 \bool_if:NT \g_lngx_old_style_bool {
414 Numbers = { OldStyle },
415 \bool_if:NT \g_lngx_old_style_one_bool {
416 CharacterVariant = { 6 }
417 }
418 }
419 },
420 text~ sans~ extra~
421 features = {
422 \bool_if:NT \g_lngx_old_style_bool {
423 Numbers = { OldStyle },
424 \bool_if:NT \g_lngx_old_style_one_bool {
425 CharacterVariant = { 6 }
426 }
427 }
428 }
429 }

All the font features are built using the internal functions and then fonts are set.
430 __lngx_build_main_font_features:
431 \lngx_set_main_font:VV
432 \g__lngx_text_main_font_features_tl
433 \g__lngx_text_main_font_tl
434 __lngx_build_sans_font_features:
435 \lngx_set_sans_font:VV
436 \g__lngx_text_sans_font_features_tl
437 \g__lngx_text_sans_font_tl
438 __lngx_build_mono_font_features:
439 \lngx_set_mono_font:VV
440 \g__lngx_text_mono_font_features_tl
441 \g__lngx_text_mono_font_tl
442 __lngx_build_math_features:
443 \lngx_set_math_font:VV \g__lngx_math_features_tl

34

444 \g__lngx_math_font_tl
445 __lngx_build_math_bold_features:
446 \lngx_set_math_bold_font:VV \g__lngx_math_bold_features_tl
447 \g__lngx_math_bold_font_tl
448 }
449 ⟨/font⟩

35

LinguisTiX-glossing Documentation | LATEX3-interface

450 ⟨∗glossing⟩
451 \ProvidesExplPackage{linguistix-glossing}
452 {2026-01-19}
453 {v0.7}
454 {%
455 Accessible glossing with LinguisTiX%
456 }

In order to print the multi-column glossary, I load the \multicol package.
457

458 \IfPackageLoadedF { multicol } {
459 \RequirePackage { multicol }
460 }

I generate expansion-variants for kernel commands.
461

462 \cs_generate_variant:Nn \seq_if_in:NnF { Ne }

Then I declare some variables that will be used for generating the glossing-auxiliary.
463

464 \bool_new:N \l_lngx_expansion_bool
465 \tl_clear_new:N \l_lngx_gloss_separator_tl
466 \tl_clear_new:N \l_lngx_expansion_separator_tl
467 \tl_clear_new:N \l_lngx_glossary_separator_tl
468 \dim_zero_new:N \l_lngx_i_have_dim
469 \dim_zero_new:N \l_lngx_i_need_dim
470 \dim_zero_new:N \l_lngx_remain_dim
471 \dim_zero_new:N \l_lngx_i_hack_dim
472 \int_gzero_new:N \g__lngx_page_ref_int
473 \str_clear_new:N \l_lngx_gls_language_str
474 \str_clear_new:N \l__lngx_gls_sorting_order_str
475 \str_clear_new:N \l__lngx_gls_expansion_case_str
476 \str_clear_new:N \l__lngx_glossary_style_str
477 \str_clear_new:N \l__lngx_separator_str
478 \seq_gclear_new:N \g__lngx_gls_use_order_seq
479

480 \str_set:Nn \l__lngx_separator_str { gloss }

Glossaries are hyperlinked with complex and cryptic labels. Some readers read the labels
loudly when using assistive technology. In order to dodge that, I add the text to the
Contents key. It uses Ulrike’s ideas: tex.stackexchange.com/a/758083/174620.

481

482 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
483 \socket_new_plug:nnn { hyp / link / GoTo / Contents }
484 { text } {
485 \pdfstringdef __lngx_tmp_text: { #2 }
486 \pdfannot_dict_put:nne { link / GoTo } { Contents } {
487 (__lngx_tmp_text:)
488 }
489 }
490 }

After these initial declarations, I move to the socket that controls the description of the
gloss. The socket itself has no arguments.

491

36

tex.stackexchange.com/a/758083/174620

492 \socket_new:nn { lngx / description / gloss } { 0 }

__lngx_gloss_description: When the socket is assigned the on plug, it defines the expandable internal command
for glossing description. It is then used inside the tagging socket. The same command
is made inactive when the socket is assigned the off plug. By default the off plug is
assigned (this is experimental and may change after reviews from the blind people). The
socket is activated by using it.
493

494 \socket_new_plug:nnn { lngx / description / gloss } { on } {
495 \cs_set:Npn __lngx_gloss_description: { Gloss~ }
496 }
497

498 \socket_new_plug:nnn { lngx / description / gloss }
499 { off } {
500 \cs_set_eq:NN __lngx_gloss_description: \prg_do_nothing:
501 }
502

503 \socket_assign_plug:nn { lngx / description / gloss }
504 { off }
505

506 \socket_use:n { lngx / description / gloss }

(End of definition for __lngx_gloss_description:.)
Then I declare the tagging socket for glossing which takes two arguments. It should
follow the default tagging which is why I use the default plug (which is the only
plug the package does and will offer). The code is based on suggestions by Ulrike
Fischer (github.com/latex3/tagging-project/discussions/975). The E tag is used
for ‘expansion’ which more or less suits the nature of glosses. So it is used here. The
command __lngx_gloss_description: is controlled by the socket and is expandable.
507

508 \NewTaggingSocket { lngx / gloss } { 2 }
509

510 \NewTaggingSocketPlug { lngx / gloss } { default } {
511 \mode_leave_vertical:
512 \tag_mc_end:
513 \exp_args:Ne
514 \tag_struct_begin:n {
515 tag = { Span },
516 E = {
517 __lngx_gloss_description: #2
518 }
519 }
520 \tag_mc_begin:n {
521 tag = { Span }
522 }

The argument is printed with the package-controlled formatting command. First I check
if the hyperref package is loaded. If it is loaded, the link colour is changed to the one
stored in the variable \g_lngx_gloss_link_color_str (black, by default).
523 \IfPackageLoadedTF { hyperref } {
524 \group_begin:
525 \str_clear:N \l_tmpa_str
526 \str_set:Nn \l_tmpa_str { #1 }
527 \exp_args:Ne \hypersetup {

37

github.com/latex3/tagging-project/discussions/975

528 linkcolor = {
529 \exp_not:V \g__lngx_gloss_link_color_str
530 }
531 }

The socket for adding text into the Contents directory is used here.
532 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
533 \socket_assign_plug:nn {
534 hyp / link / GoTo / Contents
535 }
536 { text }
537 }
538 \lngx_gloss_format:n {
539 \hyperlink { lngx_ #1 _glossary } { #1 }
540 }
541 \group_end:
542 } {

If hyperref is not loaded, the text is simply printed with the formatting command.
543 \lngx_gloss_format:n { #1 }
544 }
545 \tag_mc_end:
546 \tag_struct_end:
547 \tag_mc_begin:n { }
548 }

I assign the default tagging plug to the socket I just defined.
549

550 \AssignTaggingSocketPlug { lngx / gloss } { default }

format Now I define the key for adjusting the formatting of the glosses. It controls several keys
contained in a separate set. In short, this key will take another keys as arguments.
551

552 \keys_define:nn { lngx_glossing } {
553 format
554 .meta:nn = { lngx / gloss / format } { #1 },

(End of definition for format. This function is documented on page 8.)

link color
\g__lngx_gloss_link_color_str

This option sets the colour used for glossing links. It is set to black by default.
555 link~ color
556 .str_gset:N = \g__lngx_gloss_link_color_str,
557 link~ color
558 .initial:n = { black },

(End of definition for link color and \g__lngx_gloss_link_color_str. This function is documented on
page 8.)

sort
\l__lngx_gls_sorting_order_str

Glosses can be sorted alphabetically or as they are used. The choice key for that is as
follows. By default glosses are sorted alphabetically.
559 sort
560 .choices:nn = { alphabetical, use } {
561 \str_set_eq:NN \l__lngx_gls_sorting_order_str
562 \l_keys_choice_str
563 },
564 sort
565 .initial:n = { alphabetical },

38

(End of definition for sort and \l__lngx_gls_sorting_order_str. This function is documented on page 8.)

expansion case
\l__lngx_gls_expansion_case_str

The expansion can be printed in lower case, title case (with the first letter capitalised for
all the words) or title case (with the first letter capitalised only for the first word). The
default is lower case.
566 expansion~ case
567 .choices:nn = {
568 lowercase, title~ case~ all, title~ case~ first
569 } {
570 \str_set_eq:NN \l__lngx_gls_expansion_case_str
571 \l_keys_choice_str
572 },
573 expansion~ case
574 .initial:n = { lowercase },

(End of definition for expansion case and \l__lngx_gls_expansion_case_str. This function is documented
on page 8.)

style
\l__lngx_glossary_style_str

The glossary can be printed in two styles given below. The default is block.
575 style
576 .choices:nn = { block, inline } {
577 \str_set_eq:NN \l__lngx_glossary_style_str
578 \l_keys_choice_str
579 },
580 style
581 .initial:n = { block },

(End of definition for style and \l__lngx_glossary_style_str. This function is documented on page 8.)

columns
\l__lngx_glossary_columns_int

There is an option to change the number of columns used for printing the glossary. It is
controlled here. Default is 2.
582 columns
583 .int_set:N = \l__lngx_glossary_columns_int,
584 columns
585 .initial:n = { 2 },

(End of definition for columns and \l__lngx_glossary_columns_int. This function is documented on page
9.)

page numbers
\l__lngx_glosses_page_number_bool

Page numbers can be turned off with the following boolean. By default, they are active.
586 page~ numbers
587 .bool_set:N = \l__lngx_glosses_page_number_bool,
588 page~ numbers
589 .initial:n = { true },

(End of definition for page numbers and \l__lngx_glosses_page_number_bool. This function is documented
on page 9.)

sectioning
\l__lngx_gls_sectioning_str

The section used for printing the glossary title is controlled by the following command.
By default, I use \section for printing the title.
590 sectioning
591 .str_set:N = \l__lngx_gls_sectioning_str,
592 sectioning
593 .initial:n = { section },

39

(End of definition for sectioning and \l__lngx_gls_sectioning_str. This function is documented on page
9.)

section number
\l__lngx_gls_section_number_bool

This controls if the sectioning level should be numbered or unnumbered. The default is
false.
594 section~ number
595 .bool_set:N = \l__lngx_gls_section_number_bool,
596 section~ number
597 .initial:n = { false },

(End of definition for section number and \l__lngx_gls_section_number_bool. This function is documented
on page 9.)

no bold
\l__lngx_gls_bold_bool

The no bold key is defined as an inverse boolean. By default the key is set to false
(resulting in the controlled boolean being true).

598 no~ bold
599 .bool_set_inverse:N = \l__lngx_gls_bold_bool,
600 no~ bold
601 .initial:n = { false },

(End of definition for no bold and \l__lngx_gls_bold_bool. This function is documented on page 9.)

separator
\l__lngx_separator_tl

The separator between the glosses is controlled using this key. It controls the separator
for inline glosses, expansion of glosses as well as glosses seen in the glossary. Each of these
functions set a string variable which is expanded when this key is used. The default value
of the string variable is gloss and the default value for this key is ,~, which means by
default the separator between glosses is a comma followed by a space.
602 separator
603 .code:n = {
604 \tl_set:cn {
605 l_lngx_
606 \str_use:N \l__lngx_separator_str
607 _separator_tl
608 } { #1 }
609 },
610 separator
611 .initial:n = { ,~ },

(End of definition for separator and \l__lngx_separator_tl. This function is documented on page 9.)

entry separator
\l__lngx_entry_separator_tl

The separator between glossary entries is controlled using this key. The default is a \par
token.
612 entry~ separator
613 .tl_set:N = \l__lngx_entry_separator_tl,
614 entry~ separator
615 .initial:n = { \par }
616 }

(End of definition for entry separator and \l__lngx_entry_separator_tl. This function is documented
on page 9.)
Sometimes language-specific settings are needed. I define the language string variable
with the information retrieved from the lang key of the PDF.

617

618 \str_set:Ne \l_lngx_gls_language_str {
619 \GetDocumentProperties { document / lang }
620 }

40

gloss
\lngx_gloss_format:n

The formatting of glosses is defined here. By default they are printed in small caps.
621

622 \keys_define:nn { lngx / gloss / format } {
623 gloss
624 .cs_gset_protected:Np = \lngx_gloss_format:n #1,
625 gloss
626 .initial:n = { \textsc { #1 } },

(End of definition for gloss and \lngx_gloss_format:n. These functions are documented on page 8.)

expansion
\lngx_expansion_format:n

The formatting of expansions is defined here. There is no change in the printing in the
defaults.
627 expansion
628 .cs_gset_protected:Np = \lngx_expansion_format:n #1,
629 expansion
630 .initial:n = { #1 }
631 }

(End of definition for expansion and \lngx_expansion_format:n. These functions are documented on page
8.)

\setupglossing A wrapper around these options is provided.
632

633 \NewDocumentCommand \setupglossing { m } {
634 \keys_set:nn { lngx_glossing } { #1 }
635 }

(End of definition for \setupglossing. This function is documented on page 8.)

\newgloss
\lngx_gloss_new:nn

A function that creates new glosses starts here. It takes 2 arguments.
636

637 \cs_new_protected:Npn \lngx_gloss_new:nn #1#2 {

First and foremost, the string received as the first argument should change its case to
lowercase. It is done by \str_lowercase:n. I will use a temporary string variable for
storing the converted value. This needs to be done locally so I start a group and clear the
local str variable.
638 \group_begin:
639 \str_clear:N \l_tmpa_str
640 \str_set:Ne \l_tmpa_str { \str_lowercase:n { #1 } }

Every gloss has its expansion stored in a token list associated to it. The token list is
declared here and it is set to the expansion (i.e., #2).

641 \tl_gclear_new:c {
642 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
643 }
644 \seq_gclear_new:c {
645 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
646 }
647 \tl_gset:cn {
648 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
649 } { #2 }

41

Whenever a gloss is defined, an internal protected command is defined. It doesn’t take
any argument.
650 \cs_new_protected:cpn {
651 __lngx_gloss_ \str_use:N \l_tmpa_str :
652 } {

The arguments are passed to the tagging socket. Since the tagging socket doesn’t expand
everything, an exhaustive expansion is performed with the help of \exp_args:Nee.
653 \exp_args:Nee \UseTaggingSocket
654 { lngx / gloss }
655 { \str_use:N \l_tmpa_str }
656 { #2 }

The kernel provides \seq_remove_duplicates:N, but as it iterates on each and every
item, it is slow. The duplicates can be avoided if the items are added to the sequence
conditionally and only when they don’t exist already in the sequence. This way duplicates
are not generated at all. This method is used for adding the page numbers to the sequence.
Imagine if a gloss is used twice on a page, it doesn’t make sense to add the same page
number twice. I use \label-\ref mechanism for saving the page numbers of the glosses.
An internal integer called \g__lngx_page_ref_int is used to generate unique numbers.
657 \int_gincr:N \g__lngx_page_ref_int
658 \exp_args:Ne
659 \label { lngx_gloss_ \int_use:N \g__lngx_page_ref_int }
660 \exp_args:Nee
661 \seq_if_in:ceF {
662 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
663 } {
664 \pageref {
665 lngx_gloss_ \int_use:N \g__lngx_page_ref_int
666 }
667 } {
668 \seq_gput_right:ce {
669 g_lngx_ \str_use:N \l_tmpa_str _pages_seq
670 } {
671 \pageref {
672 lngx_gloss_ \int_use:N \g__lngx_page_ref_int
673 }
674 }
675 }

The same logic is used for the sequence that stores the glosses in the order they are used.
676 \seq_if_in:NeF \g__lngx_gls_use_order_seq {
677 \str_use:N \l_tmpa_str
678 } {
679 \seq_gput_right:Ne \g__lngx_gls_use_order_seq
680 { \str_use:N \l_tmpa_str }
681 }
682 }
683 \group_end:
684 }
685

686 \cs_gset_eq:NN \newgloss \lngx_gloss_new:nn

(End of definition for \newgloss and \lngx_gloss_new:nn. These functions are documented on page 8.)

42

\renewgloss Implementing the \renewgloss command is actually quite easy. The definition of \lngx_-
gloss_new:nn uses only a single command that errors if the control sequence is already
defined, i.e., \cs_new_protected:cpn. In order to renew a gloss, simply undefining the
existing command declared with \lngx_gloss_new:nn suffices. Later the arguments are
passed to the same command again. No LATEX3 equivalent for this is provided.
687

688 \NewDocumentCommand \renewgloss { m m } {
689 \cs_undefine:c { __lngx_gloss_ #1 : }
690 \lngx_gloss_new:nn { #1 } { #2 }
691 }

(End of definition for \renewgloss. This function is documented on page 8.)

\glx The command to use a gloss takes three arguments where the first is an optional asterisk.
If it is used, the expansion of the gloss is printed without any special tags, just as plain text.
Otherwise the internal command for printing the gloss is used with the third argument.
The third argument is a clist. Any number of glosses can be added to the list. The
action is then repeated on each and every item of the list. The second argument is a
list of options for customising the output. Everything is computed locally so that for
the settings don’t leak. I perform the action on the first item as desired, then the same
is applied to the remaining items with a preceding separator. So that all the items are
separated properly.
692

693 \NewDocumentCommand \glx { s O{ } m } {
694 \group_begin:
695 \IfBooleanT { #1 } {
696 \bool_set_true:N \l_lngx_expansion_bool
697 \str_set:Nn \l__lngx_separator_str { expansion }
698 \keys_set:nn { lngx_glossing } {
699 separator = { , \c_space_tl }
700 }
701 }
702 \keys_set:nn { lngx_glossing } { #2 }
703 \tl_clear:N \l_tmpa_tl
704 \seq_clear:N \l_tmpa_seq
705 \seq_set_from_clist:Nn \l_tmpa_seq { #3 }
706 \seq_pop_left:NN \l_tmpa_seq \l_tmpa_tl
707 \str_set:Ne \l_tmpa_str {
708 \exp_args:Ne \str_lowercase:n {
709 \tl_use:N \l_tmpa_tl
710 }
711 }
712 \bool_if:NTF \l_lngx_expansion_bool {
713 \str_case:Vn \l__lngx_gls_expansion_case_str {
714 { lowercase } {
715 \text_lowercase:n {
716 \tl_use:c {
717 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
718 }
719 }
720 }
721 { title~ case~ all } {
722 \text_titlecase_all:n {

43

723 \tl_use:c {
724 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
725 }
726 }
727 }
728 { title~ case~ first } {
729 \text_titlecase_first:n {
730 \tl_use:c {
731 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
732 }
733 }
734 }
735 }
736 } {
737 \use:c { __lngx_gloss_ \str_use:N \l_tmpa_str : }
738 }
739 \seq_if_empty:NF \l_tmpa_seq {
740 \seq_map_inline:Nn \l_tmpa_seq {
741 \group_begin:
742 \str_clear:N \l_tmpa_str
743 \str_set:Ne \l_tmpa_str {
744 \exp_args:Ne \str_lowercase:n { ##1 }
745 }
746 \bool_if:NTF \l_lngx_expansion_bool {
747 \str_case:Vn \l__lngx_gls_expansion_case_str {
748 { lowercase } {
749 \tl_use:N \l_lngx_expansion_separator_tl
750 \text_lowercase:n {
751 \tl_use:c {
752 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
753 }
754 }
755 }
756 { title~ case~ all } {
757 \tl_use:N \l_lngx_expansion_separator_tl
758 \text_titlecase_all:n {
759 \tl_use:c {
760 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
761 }
762 }
763 }
764 { title~ case~ first } {
765 \tl_use:N \l_lngx_expansion_separator_tl
766 \text_titlecase_first:n {
767 \tl_use:c {
768 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
769 }
770 }
771 }
772 }
773 } {
774 \tl_use:N \l_lngx_gloss_separator_tl
775 \use:c { __lngx_gloss_ \str_use:N \l_tmpa_str : }
776 }

44

777 \group_end:
778 }
779 }
780 \group_end:
781 }

(End of definition for \glx. This function is documented on page 7.)

__lngx_dotfill:nnn For the dotfill between the gloss and the expansion, I create a custom internal command.
The code is based on user Jonathan P. Spratte’s answer seen here: topanswers.xyz/tex?
q=8155#a7758. The dotfill should not be tagged at all and in fact it should be suppressed
so that the readers don’t go ‘dot, dot, dot, dot …’ (Frank has convinced us forever with
his TUG 2025 talk).
782

783 \cs_new_protected:Npn __lngx_dotfill:nnn #1#2#3 {
784 %% Courtesy: Jonathan P. Spratte
785 %% topanswers.xyz/tex?q=8155#a7758 (LPPL)
786 \l__lngx_entry_separator_tl
787 \smallskip
788 \group_begin:
789 \rightskip = 0pt plus -1fil \prg_do_nothing:
790 \parfillskip = 0pt plus 1fil \prg_do_nothing:
791 \leftskip = 1em plus 1fil \prg_do_nothing:
792 \finalhyphendemerits = 0 \prg_do_nothing:
793 \parindent = -1em \prg_do_nothing:
794 \bool_if:NT \l__lngx_gls_bold_bool { \textbf } {
795 \lngx_gloss_format:n {
796 #1
797 }
798 \tl_use:N \l_lngx_glossary_separator_tl
799 }
800 #2
801 \leavevmode
802 \quad
803 \cleaders
804 \hbox to 0.44em { \hss . \hss }
805 \hskip 0.5cm plus 1fill \prg_do_nothing:
806 \quad
807 \kern 0pt \prg_do_nothing:
808 \em #3
809 \l__lngx_entry_separator_tl
810 \group_end:
811 }

(End of definition for __lngx_dotfill:nnn.)

lngx_multicols Here I define the custom multicolumn environment which does nothing if the number of
columns is 1.
812

813 \NewDocumentEnvironment { lngx_multicols } { m } {
814 \int_compare:nNnTF { 1 } < {
815 \int_use:N \l__lngx_glossary_columns_int
816 } {
817 \begin { multicols } {

45

topanswers.xyz/tex?q=8155#a7758
topanswers.xyz/tex?q=8155#a7758

818 \int_use:N \l__lngx_glossary_columns_int
819 } [#1]
820 } { #1 }
821 \noindent
822 } {
823 \int_compare:nNnT { 1 } < {
824 \int_use:N \l__lngx_glossary_columns_int
825 } {
826 \end { multicols }
827 }
828 }

(End of definition for lngx_multicols. This function is documented on page 18.)

\lngx_gloss_list: Finally we come to the command that prints the glosses. First it sets the boolean for
creating the aux file to false.
829

830 \cs_new_protected:Npn \lngx_gloss_list: {
831 \bool_gset_false:N \g_lngx_trigger_aux_file_bool

I start a group, clear a scratch sequence and set it equal to the sequence that stores the
order of the glosses. If the aux file is read, the aux flag is added to the variable, or else it
is read on the fly.
832 \group_begin:
833 \seq_clear:N \l_tmpa_seq
834 \seq_set_eq:NN \l_tmpa_seq \g__lngx_gls_use_order_seq

If the sorting order is set to alphabetical, the sequence needs to get sorted. For that, I
use LATEX3’s mechanism for sorting strings.
835 \str_case:Vn \l__lngx_gls_sorting_order_str {
836 { alphabetical } {
837 \seq_sort:Nn \l_tmpa_seq {
838 \str_compare:nNnTF { ##1 } > { ##2 } {
839 \sort_return_swapped:
840 } {
841 \sort_return_same:
842 }
843 }
844 }
845 }

If the style used is inline, the glosses come after the each other. That means the default
entry separator, i.e., \par must be changed. Here I set it to ,~ by default (locally). The
separator between the gloss and the entry is defined as a colon followed by a space.
846 \str_if_eq:VnTF \l__lngx_glossary_style_str { inline } {
847 \group_begin:
848 \keys_set:nn { lngx_glossing } {
849 separator = { \c_colon_str \c_space_tl },
850 entry~ separator = { ,~ }
851 }

Then each item from the sequence is popped (from the left). It is then passed to a string
variable to get rid of the catcodes. The string variable is then used in \MakeLinkTarget*.
The gloss is then printed with its separator in bold shape.
852 \tl_clear:N \l_tmpa_tl

46

853 \str_clear:N \l_tmpa_str
854 \seq_pop_left:NN \l_tmpa_seq \l_tmpa_tl
855 \str_set:NV \l_tmpa_str \l_tmpa_tl
856 \tag_mc_end:
857 \tag_struct_begin:n {
858 tag = { Span },
859 }
860 \tag_mc_begin:n {
861 tag = { Span }
862 }
863 \MakeLinkTarget * {
864 lngx_ \str_use:N \l_tmpa_str _glossary
865 }
866 \bool_if:NT \l__lngx_gls_bold_bool { \textbf } {
867 \lngx_gloss_format:n {
868 \tl_use:N \l_tmpa_tl
869 \tl_use:N \l_lngx_glossary_separator_tl
870 }
871 }
872 \tag_mc_end:
873 \tag_struct_end:

Then it is checked in which case the expansion is requested. According to that the tl is
printed.
874 \str_case:Vn \l__lngx_gls_expansion_case_str {
875 { lowercase } {
876 \lngx_expansion_format:n {
877 \text_lowercase:n {
878 \tl_use:c {
879 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
880 }
881 }
882 }
883 }
884 { title~ case~ all } {
885 \lngx_expansion_format:n {
886 \text_titlecase_all:n {
887 \tl_use:c {
888 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
889 }
890 }
891 }
892 }
893 { title~ case~ first } {
894 \lngx_expansion_format:n {
895 \text_titlecase_first:n {
896 \tl_use:v {
897 g_lngx_ \str_use:N \l_tmpa_str _expansion_tl
898 }
899 }
900 }
901 }
902 }

After printing one entry successfully, if there are any more items left in the sequence, they

47

are printed with the same method, but with an entry separator at the beginning.
903 \seq_if_empty:NF \l_tmpa_seq {
904 \seq_map_inline:Nn \l_tmpa_seq {
905 \group_begin:
906 \tl_use:N \l__lngx_entry_separator_tl
907 \MakeLinkTarget * { lngx_ ##1 _glossary }
908 \textbf {
909 \lngx_gloss_format:n {
910 ##1
911 \tl_use:N \l_lngx_glossary_separator_tl
912 }
913 }
914 \str_case:Vn \l__lngx_gls_expansion_case_str {
915 { lowercase } {
916 \lngx_expansion_format:n {
917 \text_lowercase:n {
918 \exp_not:v { g_lngx_ ##1 _expansion_tl }
919 }
920 }
921 }
922 { title~ case~ all } {
923 \lngx_expansion_format:n {
924 \text_titlecase_all:n {
925 \exp_not:v { g_lngx_ ##1 _expansion_tl }
926 }
927 }
928 }
929 { title~ case~ first } {
930 \lngx_expansion_format:n {
931 \text_titlecase_first:n {
932 \exp_not:v { g_lngx_ ##1 _expansion_tl }
933 }
934 }
935 }
936 }
937 \group_end:
938 }
939 }
940 \group_end:
941 } {

If the style is not inline, then the default block style is assumed and firstly the word
‘glossary’ is printed in a sectioning command controlled by the keys. The \glossaryname
command is provided by babel. If it is undefined, that means the user hasn’t loaded babel.
In that case, I define the command with the string Glossary.
942 \ProvideDocumentCommand \glossaryname { } { Glossary }

Then the lngx_multicols environment starts which doesn’t do anything if the number
of columns is 1.
943 \begin { lngx_multicols } {
944 \str_if_eq:VnF \l__lngx_gls_sectioning_str { null } {
945 \use:e {
946 \exp_not:N \use:c
947 { \str_use:N \l__lngx_gls_sectioning_str }

48

948 \bool_if:NF \l__lngx_gls_section_number_bool { * }
949 { \exp_not:N \glossaryname }
950 }
951 }
952 }
953 \seq_map_inline:Nn \l_tmpa_seq {

In this style, even the page numbers are printed along with glosses. We save the page
numbers in a temporary sequence which is locally cleared.
954 \group_begin:
955 \seq_clear:N \l_tmpb_seq
956 \seq_map_inline:cn { g_lngx_ ##1 _pages_seq } {

The pages are hyperlinked with the internal PDF names.
957 \seq_put_right:Ne \l_tmpb_seq { ####1 }
958 }

The page numbers are separated using dotfill. Before the glosses, \MakeLinkTarget* is
used.
959 __lngx_dotfill:nnn {
960 \MakeLinkTarget * { lngx_ ##1 _glossary }
961 ##1
962 } {

The case of expansion is checked and then the appropriate casing commands are used for
expansions.
963 \str_case:Vn \l__lngx_gls_expansion_case_str {
964 { lowercase } {
965 \lngx_expansion_format:n {
966 \text_lowercase:n {
967 \exp_not:v { g_lngx_ ##1 _expansion_tl }
968 }
969 }
970 }
971 { title~ case~ all } {
972 \lngx_expansion_format:n {
973 \text_titlecase_all:n {
974 \exp_not:v { g_lngx_ ##1 _expansion_tl }
975 }
976 }
977 }
978 { title~ case~ first } {
979 \lngx_expansion_format:n {
980 \text_titlecase_first:n {
981 \exp_not:v { g_lngx_ ##1 _expansion_tl }
982 }
983 }
984 }
985 }
986 } {

The list of page numbers is printed.
987 \seq_use:Nn \l_tmpb_seq { ,~ }
988 }
989 \group_end:
990 }

49

991 \end { lngx_multicols }
992 }
993 \group_end:
994 }

(End of definition for \lngx_gloss_list:. This function is documented on page 18.)

\listofglosses Here is the command that defines the user-side command for printing the glosses. It
defines the separator by default if not provided. All settings are local in order to avoid
leaking. \l_lngx_separator_tl is the generic string that is used inside the separator
key that sets the separator contextually. This command uses the LATEX3 function for
printing the glosses.
995

996 \NewDocumentCommand \listofglosses { O { } } {
997 \group_begin:
998 \str_set:Nn \l__lngx_separator_str { glossary }
999 \keys_set:nn { lngx_glossing } {
1000 separator = { \c_colon_str \c_space_tl }
1001 }
1002 \keys_set:nn { lngx_glossing } { #1 }
1003 \lngx_gloss_list:
1004 \group_end:
1005 }
1006 ⟨/glossing⟩

(End of definition for \listofglosses. This function is documented on page 8.)

50

LinguisTiX-ipa Documentation | LATEX3-interface

1007 ⟨∗ipa⟩
1008 \ProvidesExplPackage{linguistix-ipa}
1009 {2026-01-19}
1010 {v0.7}
1011 {%
1012 A package for typesetting the IPA
1013 (International Phonetic Alphabet) from
1014 the ‘LinguisTiX’ bundle.%
1015 }

Then, I load unicode-math, LinguisTiX-nfss and LinguisTiX-base (if they are not already
loaded).
1016

1017 \IfPackageLoadedF { unicode-math } {
1018 \RequirePackage { unicode-math }
1019 }
1020

1021 \IfPackageLoadedF { linguistix-base } {
1022 \RequirePackage { linguistix-base }
1023 }
1024

1025 \IfPackageLoadedF { linguistix-nfss } {
1026 \RequirePackage { linguistix-nfss }
1027 }
1028

1029 \IfPackageLoadedF { linguistix-fixpex } {
1030 \RequirePackage { linguistix-fixpex }
1031 }

\ipatext
\ipatext*

The \ipatext command along with its starred variant is developed here.
1032

1033 \NewDocumentCommand \ipatext { s m } {
1034 \IfBooleanTF { #1 } {
1035 {
1036 \lngxipa
1037 / #2 /
1038 }
1039 } {
1040 {
1041 \lngxipa
1042 [#2]
1043 }
1044 }
1045 }

(End of definition for \ipatext and \ipatext*. These functions are documented on page 10.)

51

\g__lngx_ipa_main_fonts_prop
\g__lngx_ipa_main_font_features_tl

ipa upright
ipa upright features

ipa bold upright
ipa bold upright features

ipa italic
ipa italic features

ipa bold italic
ipa bold italic features

ipa slanted
ipa slanted features

ipa bold slanted
ipa bold slanted features

ipa swash
ipa swash features

ipa bold swash
ipa bold swash features

ipa small caps
ipa small caps features

These variables store the values for fonts and features for the serif IPA.
1046

1047 \prop_gclear_new:N \g__lngx_ipa_main_fonts_prop
1048 \tl_gclear_new:N \g__lngx_ipa_main_font_features_tl
1049

1050 \clist_map_inline:nn {
1051 upright,
1052 bold~ upright,
1053 italic,
1054 bold~ italic,
1055 slanted,
1056 bold~ slanted,
1057 swash,
1058 bold~ swash,
1059 small~ caps
1060 } {

All the keys here are prefixed with the word ipa in order to distinguish them from the
keys provided by the LinguisTiX-fonts package. These keys have identical method as
their text counterparts, though.
1061 \keys_define:nn { lngx_keys } {
1062 ipa~ #1
1063 .code:n = {
1064 \group_begin:
1065 \str_clear:N \l_tmpa_str
1066 \str_set:Ne \l_tmpa_str {
1067 \text_titlecase_all:n { #1 }
1068 Font
1069 }
1070 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1071 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
1072 { ipa~ #1 }
1073 { \str_use:N \l_tmpa_str = { ##1 } }
1074 \group_end:
1075 },
1076 ipa~ #1~ features
1077 .code:n = {
1078 \group_begin:
1079 \str_clear:N \l_tmpa_str
1080 \str_set:Ne \l_tmpa_str {
1081 \text_titlecase_all:n { #1 }
1082 Features
1083 }
1084 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1085 \prop_gput:Nne \g__lngx_ipa_main_fonts_prop
1086 { ipa~ #1~ features }
1087 {
1088 \str_use:N \l_tmpa_str = { ##1 }
1089 }
1090 \group_end:
1091 }
1092 }
1093 }

52

(End of definition for \g__lngx_ipa_main_fonts_prop and others. These functions are documented on page
10.)

ipa extra features This key adds to the property that stores the extra features for the serif fonts.
1094

1095 \keys_define:nn { lngx_keys } {
1096 ipa~ extra~ features
1097 .prop_gput:N = \g__lngx_ipa_main_fonts_prop
1098 }

(End of definition for ipa extra features. This function is documented on page 12.)

53

\g__lngx_ipa_sans_fonts_prop
\g__lngx_ipa_sans_font_features_tl

\g__lngx_ipa_mono_fonts_prop
\g__lngx_ipa_mono_font_features_tl

ipa sans upright
ipa sans upright features

ipa sans bold upright
ipa sans bold upright features

ipa sans italic
ipa sans italic features

ipa sans bold italic
ipa sans bold italic features

ipa sans slanted
ipa sans slanted features

ipa sans bold slanted
ipa sans bold slanted features

ipa sans swash
ipa sans swash features

ipa sans bold swash
ipa sans bold swash features

ipa sans small caps
ipa sans small caps features

ipa mono upright
ipa mono upright features

ipa mono bold upright
ipa mono bold upright features

ipa mono italic
ipa mono italic features

ipa mono bold italic
ipa mono bold italic features

ipa mono slanted
ipa mono slanted features

ipa mono bold slanted
ipa mono bold slanted features

ipa mono swash
ipa mono swash features

ipa mono bold swash
ipa mono bold swash features

ipa mono small caps
ipa mono small caps features

Since the only difference between the upcoming keys is that of the word sans and mono,
we combine them together and use a nested clist. The rest of the mechanism is identical.
1099

1100 \prop_gclear_new:N \g__lngx_ipa_sans_fonts_prop
1101 \tl_gclear_new:N \g__lngx_ipa_sans_font_features_tl
1102 \prop_gclear_new:N \g__lngx_ipa_mono_fonts_prop
1103 \tl_gclear_new:N \g__lngx_ipa_mono_font_features_tl
1104

1105 \clist_map_inline:nn {
1106 sans,
1107 mono
1108 } {
1109 \clist_map_inline:nn {
1110 upright,
1111 bold~ upright,
1112 italic,
1113 bold~ italic,
1114 slanted,
1115 bold~ slanted,
1116 swash,
1117 bold~ swash,
1118 small~ caps
1119 } {
1120 \keys_define:nn { lngx_keys } {
1121 ipa~ #1~ ##1
1122 .code:n = {
1123 \group_begin:
1124 \str_clear:N \l_tmpa_str
1125 \str_set:Ne \l_tmpa_str {
1126 \text_titlecase_all:n { ##1 }
1127 Font
1128 }
1129 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1130 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1131 { ipa~ #1~ ##1 }
1132 { ####1 }
1133 \group_end:
1134 },
1135 ipa~ #1~ ##1~ features
1136 .code:n = {
1137 \group_begin:
1138 \str_clear:N \l_tmpa_str
1139 \str_set:Ne \l_tmpa_str {
1140 \text_titlecase_all:n { #1 }
1141 Features
1142 }
1143 \str_replace_all:Nnn \l_tmpa_str { ~ } { }
1144 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1145 { ipa~ #1~ ##1~ features }
1146 {
1147 \str_use:N \l_tmpa_str = { ####1 }
1148 }
1149 \group_end:
1150 }

54

1151 }
1152 }
1153 \keys_define:nn { lngx_keys } {
1154 ipa~ #1~ extra~ features
1155 .prop_gput:c = {
1156 g__lngx_ipa_ #1 _fonts_prop
1157 }
1158 }
1159 }

(End of definition for \g__lngx_ipa_sans_fonts_prop and others. These functions are documented on page
11.)

\g__lngx_ipa_main_font_tl
\g__lngx_ipa_sans_font_tl
\g__lngx_ipa_mono_font_tl

ipa main font
ipa sans font
ipa mono font

These keys provide keys to set fonts for IPA.
1160

1161 \clist_map_inline:nn {
1162 main,
1163 sans,
1164 mono
1165 } {
1166 \keys_define:nn { lngx_keys } {
1167 ipa~ #1~ font
1168 .tl_gset:c = { g__lngx_ipa_ #1 _font_tl }
1169 }
1170 }

(End of definition for \g__lngx_ipa_main_font_tl and others. These functions are documented on page 10.)

ipa newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families for
IPA. Stylistic set 5 of NewCM is dedicated to linguistics. So we use it here. For correct
diacritic placement, we need HarfBuzz renderer. That also is loaded here.
1171

1172 \keys_define:nn { lngx_keys } {
1173 ipa~ newcm
1174 .meta:n = {
1175 ipa~ extra~
1176 features = {
1177 Renderer = {HarfBuzz},
1178 StylisticSet = {05}
1179 },
1180 ipa~ sans~ extra~
1181 features = {
1182 Renderer = {HarfBuzz},
1183 StylisticSet = {05}
1184 },
1185 ipa~ mono~ extra~
1186 features = {
1187 Renderer = {HarfBuzz},
1188 StylisticSet = {05}
1189 },
1190 ipa~ main~ font = { NewCM10-Book.otf },
1191 ipa~ sans~ font = { NewCMSans10-Book.otf },
1192 ipa~ mono~ font = { NewCMMono10-Book.otf }

55

1193 }
1194 }

(End of definition for ipa newcm. This function is documented on page 10.)

ipa newcm sans This is a .meta:n key that sets the default IPA font to the sans family.
1195

1196 \keys_define:nn { lngx_keys } {
1197 ipa~ newcm~ sans
1198 .meta:n = {
1199 ipa~ extra~
1200 features = {
1201 Renderer = {HarfBuzz},
1202 StylisticSet = {05}
1203 },
1204 ipa~ sans~ extra~
1205 features = {
1206 Renderer = {HarfBuzz},
1207 StylisticSet = {05}
1208 },
1209 ipa~ mono~ extra~
1210 features = {
1211 Renderer = {HarfBuzz},
1212 StylisticSet = {05}
1213 },
1214 ipa~ main~ font = { NewCMSans10-Book.otf },
1215 ipa~ sans~ font = { NewCMSans10-Book.otf },
1216 ipa~ mono~ font = { NewCMMono10-Book.otf }
1217 }
1218 }

(End of definition for ipa newcm sans. This function is documented on page 10.)

ipa newcm mono This is a .meta:n key that sets the default IPA fonts to the monospaced family.
1219

1220 \keys_define:nn { lngx_keys } {
1221 ipa~ newcm~ mono
1222 .meta:n = {
1223 ipa~ extra~
1224 features = {
1225 Renderer = {HarfBuzz},
1226 StylisticSet = {05}
1227 },
1228 ipa~ sans~ extra~
1229 features = {
1230 Renderer = {HarfBuzz},
1231 StylisticSet = {05}
1232 },
1233 ipa~ mono~ extra~
1234 features = {
1235 Renderer = {HarfBuzz},
1236 StylisticSet = {05}
1237 },
1238 ipa~ main~ font = { NewCMMono10-Book.otf },
1239 ipa~ sans~ font = { NewCMSans10-Book.otf },

56

1240 ipa~ mono~ font = { NewCMMono10-Book.otf }
1241 }
1242 }

(End of definition for ipa newcm mono. This function is documented on page 10.)

ipa newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.
1243

1244 \keys_define:nn { lngx_keys } {
1245 ipa~ newcm~ regular
1246 .meta:n = {
1247 ipa~ extra~
1248 features = {
1249 Renderer = {HarfBuzz},
1250 StylisticSet = {05}
1251 },
1252 ipa~ sans~ extra~
1253 features = {
1254 Renderer = {HarfBuzz},
1255 StylisticSet = {05}
1256 },
1257 ipa~ mono~ extra~
1258 features = {
1259 Renderer = {HarfBuzz},
1260 StylisticSet = {05}
1261 },
1262 ipa~ main~ font = { NewCM10-Regular.otf },
1263 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1264 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1265 }
1266 }

(End of definition for ipa newcm regular. This function is documented on page 10.)

ipa newcm regular sans This is a .meta:n key that sets the default IPA fonts to the regular sans variant of the
New Computer Modern family.
1267

1268 \keys_define:nn { lngx_keys } {
1269 ipa~ newcm~ regular~ sans
1270 .meta:n = {
1271 ipa~ extra~
1272 features = {
1273 Renderer = {HarfBuzz},
1274 StylisticSet = {05}
1275 },
1276 ipa~ sans~ extra~
1277 features = {
1278 Renderer = {HarfBuzz},
1279 StylisticSet = {05}
1280 },
1281 ipa~ mono~ extra~
1282 features = {
1283 Renderer = {HarfBuzz},

57

1284 StylisticSet = {05}
1285 },
1286 ipa~ main~ font = { NewCMSans10-Regular.otf },
1287 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1288 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1289 }
1290 }

(End of definition for ipa newcm regular sans. This function is documented on page 10.)

ipa newcm regular mono This is a .meta:n key that sets the default IPA fonts to the regular monospaced variant
of the New Computer Modern family.
1291

1292 \keys_define:nn { lngx_keys } {
1293 ipa~ newcm~ regular~ mono
1294 .meta:n = {
1295 ipa~ extra~
1296 features = {
1297 Renderer = {HarfBuzz},
1298 StylisticSet = {05}
1299 },
1300 ipa~ sans~ extra~
1301 features = {
1302 Renderer = {HarfBuzz},
1303 StylisticSet = {05}
1304 },
1305 ipa~ mono~ extra~
1306 features = {
1307 Renderer = {HarfBuzz},
1308 StylisticSet = {05}
1309 },
1310 ipa~ main~ font = { NewCMMono10-Regular.otf },
1311 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1312 ipa~ mono~ font = { NewCMMono10-Regular.otf }
1313 }
1314 }

(End of definition for ipa newcm regular mono. This function is documented on page 10.)
We set the ipa newcm key by default.

1315

1316 \lngx_set_keys:n {ipa~ newcm}

\lngx_set_main_ipa_font:nn
\lngx_main_ipa:
lngx_ipa_rm_nfss

\lngx_set_sans_ipa_font:nn
\lngx_sans_ipa:
lngx_ipa_sf_nfss

\lngx_set_mono_ipa_font:nn
\lngx_mono_ipa:
lngx_ipa_tt_nfss

Here, I develop font-setting commands for IPA. These commands are set with
\setfontfamily, so they keep overriding the definitions of the same command names.
These commands set NFSS families that we use later for setting the IPA fonts. These
functions and NFSS families are public, but manipulating them has effects (mostly desired)
at several other places, so use them with caution.
1317

1318 \cs_new_protected:Npn \lngx_set_main_ipa_font:nn #1#2 {
1319 \setfontfamily \lngx_main_ipa: [
1320 #1,
1321 NFSSFamily = { lngx_ipa_rm_nfss }
1322] { #2 }
1323 }

58

1324

1325 \cs_new_protected:Npn \lngx_set_sans_ipa_font:nn #1#2 {
1326 \setfontfamily \lngx_sans_ipa: [
1327 #1,
1328 NFSSFamily = { lngx_ipa_sf_nfss }
1329] { #2 }
1330 }
1331

1332 \cs_new_protected:Npn \lngx_set_mono_ipa_font:nn #1#2 {
1333 \setfontfamily \lngx_mono_ipa: [
1334 #1,
1335 NFSSFamily = { lngx_ipa_tt_nfss }
1336] { #2 }
1337 }
1338

1339 \cs_generate_variant:Nn \lngx_set_main_ipa_font:nn { VV }
1340 \cs_generate_variant:Nn \lngx_set_sans_ipa_font:nn { VV }
1341 \cs_generate_variant:Nn \lngx_set_mono_ipa_font:nn { VV }

(End of definition for \lngx_set_main_ipa_font:nn and others. These functions are documented on page 19.)

lngx_ipa Here, I create a ‘super font family’ with \lngx_super_font_family:nn, a macro provided
by LinguisTiX-nfss. Please see the documentation of that package for more information.
Note that lngx_ipa is a super family responsible for all the IPA-related functions of the
package. It is associated with the NFSS families defined just now for the IPA.
1342

1343 \lngx_super_font_family:nn { lngx_ipa } {
1344 rm = { lngx_ipa_rm_nfss },
1345 sf = { lngx_ipa_sf_nfss },
1346 tt = { lngx_ipa_tt_nfss }
1347 }

(End of definition for lngx_ipa. This function is documented on page 19.)

\lngxipa
\lngx_ipa:

I use \lngx_softer_super_font_family:n provided by LinguisTiX-nfssfor defining this
switch to the IPA.
1348

1349 \cs_new_protected:Npn \lngx_ipa: {
1350 \lngx_softer_super_font_family:n { lngx_ipa }
1351 }
1352

1353 \cs_gset_eq:NN \lngxipa \lngx_ipa:

(End of definition for \lngxipa and \lngx_ipa:. These functions are documented on page 10.)
Now, I have used the exact same method that I described in the implementation of
LinguisTiX-fonts for setting the size variants. This is done with lazy evaluation, just
before \begin{document}.
1354

1355 \clist_map_inline:nn {
1356 main,
1357 sans,
1358 mono
1359 } {
1360 \cs_new_protected:cpn {

59

1361 lngx_build_ #1 _ipa_font_features:
1362 } {
1363 \prop_map_inline:cn { g__lngx_ipa_ #1 _fonts_prop } {
1364 \tl_gput_right:cn {
1365 g__lngx_ipa_ #1 _font_features_tl
1366 } { ####2 }
1367 }
1368 }
1369 }
1370

1371 \hook_gput_code:nnn { begindocument / before } { . } {
1372 \lngx_build_main_ipa_font_features:
1373 \lngx_set_main_ipa_font:VV
1374 \g__lngx_ipa_main_font_features_tl
1375 \g__lngx_ipa_main_font_tl
1376 \lngx_build_sans_ipa_font_features:
1377 \lngx_set_sans_ipa_font:VV
1378 \g__lngx_ipa_sans_font_features_tl
1379 \g__lngx_ipa_sans_font_tl
1380 \lngx_build_mono_ipa_font_features:
1381 \lngx_set_mono_ipa_font:VV
1382 \g__lngx_ipa_mono_font_features_tl
1383 \g__lngx_ipa_mono_font_tl
1384 }
1385 ⟨/ipa⟩

60

LinguisTiX-languages Documentation | LATEX3-interface

1386 ⟨∗lang⟩
1387 \ProvidesExplPackage{linguistix-languages}
1388 {2026-01-19}
1389 {v0.7}
1390 {%
1391 An assistant package for automatically
1392 loading fonts and more settings for
1393 languages.%
1394 }

LinguisTiX-base is loaded (if not already done) for the key-value parser.
1395

1396 \IfPackageLoadedF { linguistix-base } {
1397 \RequirePackage { linguistix-base }
1398 }

The babel package is loaded with provide*=* option as it mandates the use of modern
mechanism.
1399

1400 \IfPackageLoadedF { babel } {
1401 \RequirePackage [provide * = *] { babel }
1402 }

\g_lngx_main_language_tl I declare a tl that I will use for storing the main language. It is publicly available.
1403

1404 \tl_new:N \g_lngx_main_language_tl

(End of definition for \g_lngx_main_language_tl. This function is documented on page 19.)

\g_lngx_languages_clist I declare a clist that I will use for storing languages. It is publicly available.
1405

1406 \clist_new:N \g_lngx_languages_clist

(End of definition for \g_lngx_languages_clist. This function is documented on page 19.)

\lngx_languages:nn
\providelanguage

I develop a wrapper macro with a :VV variant.
1407

1408 \cs_new_protected:Npn \lngx_languages:nn #1#2 {
1409 \babelprovide [#1] { #2 }
1410 }
1411

1412 \cs_generate_variant:Nn \lngx_languages:nn { VV }
1413 \cs_gset_eq:NN \providelanguage \lngx_languages:nn

(End of definition for \lngx_languages:nn and \providelanguage. These functions are documented on page
19.)
The babel package produces an ‘info’ message if the fonts are not set with \babelfont.
Mostly they aren’t set with this mechanism, so this warning is inevitable in default situ-
ations. Imagine loading LinguisTiX-fonts first and then loading this package. The fonts
are already set with \setmainfont and friends. Thus we will be prompted with this warn-
ing always. In order to avoid that, I renew the wrapper functions around \setmainfont
to \babelfont. Note that this only affects the usage when LinguisTiX-fonts is loaded. If
you use LinguisTiX-languages and then use \setmainfont-like commands, you will get
babel’s warning and I have no intention to suppress that behaviour.

61

1414

1415 \IfPackageLoadedTF { linguistix-fonts } {
1416 \cs_gset_protected:Npn \lngx_set_main_font:nn #1#2 {
1417 \babelfont { rm } [#1] { #2 }
1418 }
1419 \cs_gset_protected:Npn \lngx_set_sans_font:nn #1#2 {
1420 \babelfont { sf } [#1] { #2 }
1421 }
1422 \cs_gset_protected:Npn \lngx_set_mono_font:nn #1#2 {
1423 \babelfont { tt } [#1] { #2 }
1424 }
1425 } {
1426 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
1427 \babelfont { rm } [#1] { #2 }
1428 }
1429 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
1430 \babelfont { sf } [#1] { #2 }
1431 }
1432 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
1433 \babelfont { tt } [#1] { #2 }
1434 }
1435 }

\lngx_other_main_font:nnn
\lngx_other_sans_font:nnn
\lngx_other_mono_font:nnn

The following macros set fonts for other languages using the \babelfont command.
1436

1437 \cs_gset_protected:Npn \lngx_other_main_font:nnn #1#2#3 {
1438 \babelfont [#1] { rm } [#2] { #3 }
1439 }
1440

1441 \cs_gset_protected:Npn \lngx_other_sans_font:nnn #1#2#3 {
1442 \babelfont [#1] { sf } [#2] { #3 }
1443 }
1444

1445 \cs_gset_protected:Npn \lngx_other_mono_font:nnn #1#2#3 {
1446 \babelfont [#1] { tt } [#2] { #3 }
1447 }
1448

1449 \cs_generate_variant:Nn \lngx_other_main_font:nnn { nee }
1450 \cs_generate_variant:Nn \lngx_other_sans_font:nnn { nee }
1451 \cs_generate_variant:Nn \lngx_other_mono_font:nnn { nee }

(End of definition for \lngx_other_main_font:nnn , \lngx_other_sans_font:nnn , and \lngx_other_mono_-
font:nnn. These functions are documented on page 18.)

\lngx_load_languages:n
\loadlanguages

I provide a simple macro that only does the job of loading languages, both in LATEX3
style, as well as the in the plain style.
1452

1453 \cs_new_protected:Npn \lngx_load_languages:n #1 {
1454 \lngx_set_keys:n { languages = { #1 } }
1455 }
1456

1457 \cs_gset_eq:NN \loadlanguages \lngx_load_languages:n

(End of definition for \lngx_load_languages:n and \loadlanguages. These functions are documented on
page 19.)

62

I equate the \arabic command to a new command I want to provide. This is done in
order to get control over the default LATEX counters. The command is manipulated when
plugs are activated.

\lngx_counter:n
1458

1459 \cs_gset_eq:NN \lngx_counter:n \arabic

(End of definition for \lngx_counter:n. This function is documented on page 19.)
Now all the default counters are changed from \arabic to \lngx_counter:n.

1460

1461 \cs_set:Npn \thechapter {
1462 \lngx_counter:n { chapter }
1463 }
1464 \cs_set:Npn \thesection {
1465 \lngx_counter:n { section }
1466 }
1467 \cs_set:Npn \thesubsection {
1468 \lngx_counter:n { subsection }
1469 }
1470 \cs_set:Npn \thesubsubsection {
1471 \lngx_counter:n { subsubsection }
1472 }
1473 \cs_set:Npn \theparagraph {
1474 \lngx_counter:n { section }
1475 }
1476 \cs_set:Npn \thesubparagraph {
1477 \lngx_counter:n { section }
1478 }
1479 \cs_set:Npn \thepage {
1480 \lngx_counter:n { page }
1481 }
1482 \cs_set:Npn \thefigure {
1483 \lngx_counter:n { figure }
1484 }
1485 \cs_set:Npn \thetable {
1486 \lngx_counter:n { table }
1487 }
1488 \cs_set:Npn \thefootnote {
1489 \lngx_counter:n { footnote }
1490 }
1491 \cs_set:Npn \thempfootnote {
1492 \lngx_counter:n { mpfootnote }
1493 }
1494 \cs_set:Npn \theequation {
1495 \lngx_counter:n { equation }
1496 }

Here, I define the socket lngx/native-numbering.
1497

1498 \socket_new:nn { lngx / native-numbering } { 0 }

strict This plug sets the numbering strictly to the main language. If used, the function \lngx_-
counter:n is changed to the respective \xxxxcounter command (where xxxx stands for
the main language of the document).

63

1499

1500 \socket_new_plug:nnn { lngx / native-numbering }
1501 { strict } {
1502 \cs_gset_eq:Nc \lngx_counter:n {
1503 \tl_use:N \g_lngx_main_language_tl counter
1504 }
1505 }

(End of definition for strict. This function is documented on page 13.)

logical Here, I define the logical plug for lngx/native-numbering. The mechanism is pretty
similar as the one used for strict, but here I don’t renew it to the main language counter,
but instead I use the \localecounter command provided by the babel package. The
counters are then printed contextually (and TEX-logically).
1506

1507 \socket_new_plug:nnn { lngx / native-numbering }
1508 { logical } {
1509 \cs_gset_protected:Npn \lngx_counter:n ##1 {
1510 \localecounter { digits } { ##1 }
1511 }
1512 }

(End of definition for logical. This function is documented on page 14.)

off If the off plug is selected, then native digits are not needed. Thus the \lngx_counter:n
is set to the unmodified \arabic again.
1513

1514 \socket_new_plug:nnn { lngx / native-numbering} { off } {
1515 \cs_gset_eq:NN \lngx_counter:n \arabic
1516 }

(End of definition for off. This function is documented on page 14.)

native numbering The three choices for the native numbering key, i.e., strict, logical and off are defined
here. All of them activate the plugs of their name with the lngx/native-numbering
socket.
1517

1518 \cs_generate_variant:Nn \socket_assign_plug:nn { ne }
1519

1520 \keys_define:nn { lngx_keys } {
1521 native~ numbering
1522 .choices:nn = { strict,logical,off } {
1523 \socket_assign_plug:ne { lngx / native-numbering } {
1524 \str_use:N \l_keys_choice_str
1525 }
1526 \socket_use:n { lngx / native-numbering }
1527 },

Similarly, we set the default value to on.
1528 native~ numbering
1529 .default:n = { strict }
1530 }

(End of definition for native numbering. This function is documented on page 13.)

64

\lngx_misc_reset: Despite having sufficient control with the two plugs, there are some additional settings
required by some languages that are often not needed by most others. E.g., Marathi
renews the way enumerated lists are printed and that is supposed to be renewed when
the language is changed. I provide a shorthand to be used for resetting such settings. It
can be used in the packages of languages that don’t need special settings.
1531

1532 \cs_new_protected:Npn \lngx_misc_reset: {
1533 \cs_set:Npn \theenumii { \alph { enumii } }
1534 \cs_set:Npn \labelenumii { (\theenumii) }
1535 \cs_set:Npn \theenumiii { \roman { enumiii } }
1536 \cs_set:Npn \labelenumiii { \theenumiii . }
1537 \cs_set:Npn \theenumiv { \Alph { enumiv } }
1538 \cs_set:Npn \labelenumiv { \theenumiv . }
1539 \IfPackageLoadedT { expex } {
1540 \lingset { alpha }
1541 }
1542 \cs_gset_eq:NN \emph \textit
1543 }

(End of definition for \lngx_misc_reset:. This function is documented on page 19.)
Here, I write a message to be issued when user loads an unsupported language.
1544

1545 \msg_new:nnn { linguistix-languages } { no_support } {
1546 ‘#1’~ is~ not~ supported.\\
1547 If~ you~ want~ it~ to~ be~ supported,~ please~ report~
1548 to~ the~ maintainers.
1549 }

languages I use the .code:n type for developing the languages key.
1550

1551 \keys_define:nn { lngx_keys } {
1552 languages
1553 .code:n = {

I pass the argument of this key to a global clist. It is stored for public use.
1554 \clist_gset:Nn \g_lngx_languages_clist { #1 }

Since this is a public clist for accessing the names of the languages, I copy it to a
temporary one so that the items of public interest are not lost during the operations.
1555 \clist_set_eq:NN \l_tmpa_clist \g_lngx_languages_clist

I check if the clist is empty or not. If it is empty, that means the user used the key
without a value. In that case, babel already loads an ‘info’-message saying that no language
is loaded. So we ignore the branch and silently move to the false branch.
1556 \clist_if_empty:NF \l_tmpa_clist {

In the false branch, I pop out the first element from the clist to \l_tmpa_tl. This is the
first language passed by the user. In LinguisTiX-languages, I assume that it is intended
to be the first language. It is important to pop the element out because the settings used
for the main language are different than the ones used for other languages.
1557 \clist_pop:NN \l_tmpa_clist \l_tmpa_tl

Since this tl stores the language that is going to be the main one, I equate it to another
public tl that I will be using later in language files.
1558 \tl_set_eq:NN \g_lngx_main_language_tl \l_tmpa_tl

65

In \l_tmpb_tl, I save the options that need to go with the language stored in \l_tmpa_tl.
The package used to have onchar option loaded conditionally with LuaLATEX, but to
avoid potential clashes, now it has moved to the individual package files of languages. Now
I directly load the main option which makes the concerned language the ‘main’ language
of the document.
1559 \tl_set:Ne \l_tmpb_tl {
1560 main,

To load the data from ini files, I use the import parameter.
1561 import
1562 }

I use the \babelprovide wrapper we saw earlier with the values of the first language.
1563 \lngx_languages:VV \l_tmpb_tl \l_tmpa_tl

I scan if the package for this language is available. If it is, it is loaded.
1564 \file_if_exist:nTF { linguistix - \l_tmpa_tl . sty } {
1565 \exp_args:Ne \RequirePackage
1566 { linguistix - \l_tmpa_tl }
1567 } {

If it is not, I issue the no_ldf warning message. It takes one argument that is the name
of the language. It is extracted using the V argument type.
1568 \msg_warning:nnV { linguistix-languages }
1569 { no_support }
1570 \l_tmpa_tl
1571 }

The temporary tls are cleared.
1572 \tl_clear:N \l_tmpa_tl
1573 \tl_clear:N \l_tmpb_tl

I again check if the clist is empty. If it is, it means the user is typesetting a monolingual
document as they don’t need any other language than the ‘main’ one.
1574 \clist_if_empty:NF \l_tmpa_clist {

Now I have to repeat the same actions for all the pending languages. I do it with
\clist_map_inline:Nn.
1575 \clist_map_inline:Nn \l_tmpa_clist {
1576 \clist_pop:NN \l_tmpa_clist \l_tmpa_tl
1577 \tl_set:Ne \l_tmpb_tl { import }
1578 \lngx_languages:VV \l_tmpb_tl \l_tmpa_tl
1579 \file_if_exist:nTF {
1580 linguistix - \l_tmpa_tl . sty
1581 } {
1582 \exp_args:Ne \RequirePackage
1583 { linguistix - \l_tmpa_tl }
1584 } {
1585 \msg_warning:nnV { linguistix-languages }
1586 { no_ldf }
1587 \l_tmpa_tl
1588 }
1589 \tl_clear:N \l_tmpa_tl
1590 \tl_clear:N \l_tmpb_tl
1591 }
1592 }

66

1593 }
1594 }
1595 }
1596 ⟨/lang⟩

(End of definition for languages. This function is documented on page 13.)

67

LinguisTiX-logos Documentation | LATEX3-interface

1597 ⟨∗logos⟩
1598 \ProvidesExplPackage{linguistix-logos}
1599 {2026-01-19}
1600 {v0.7}
1601 {%
1602 Logos of the ‘LinguisTiX’ bundle.%
1603 }

The fontspec package (if not already loaded).
1604

1605 \IfPackageLoadedF { fontspec } {
1606 \RequirePackage { fontspec }
1607 }

\lngx_logo_font: This is a command that switches to the New Computer Modern Uncial font family.
1608

1609 \newfontfamily \lngx_logo_font: [
1610 UprightFont = { NewCMUncial10-Book.otf },
1611 UprightFeatures = {
1612 SizeFeatures = {
1613 {
1614 Size = {-8},
1615 Font = {NewCMUncial08-Book.otf}
1616 },
1617 {
1618 Size = {8-},
1619 Font = {NewCMUncial10-Book.otf}
1620 },
1621 }
1622 },
1623 BoldFont = { NewCMUncial10-Bold.otf },
1624 BoldFeatures = {
1625 SizeFeatures = {
1626 {
1627 Size = {-8},
1628 Font = {NewCMUncial08-Bold.otf}
1629 },
1630 {
1631 Size = {8-},
1632 Font = {NewCMUncial10-Bold.otf}
1633 },
1634 }
1635 }
1636]{ NewCMUncial10-Book.otf }

(End of definition for \lngx_logo_font:. This function is documented on page 20.)

lngx_purple_color The following defines the lngx_purple_color.
1637

1638 \color_set:nn { lngx_purple_color } { blue ! 50 ! red }

(End of definition for lngx_purple_color. This function is documented on page 20.)

68

\lngxlogo Here, I define the commands for printing various logos.
1639

1640 \NewDocumentCommand \lngxlogo { O{} } {%
1641 \group_begin:
1642 \lngx_logo_font:
1643 LinguisTi
1644 \color_group_begin:
1645 \color_select:n { lngx_purple_color }
1646 X
1647 \color_group_end:
1648 \IfBlankF { #1 } { - #1 }
1649 \group_end:
1650 }

(End of definition for \lngxlogo. This function is documented on page 14.)
Since we need expandable commands, I use the non-protected function, \cs_new:Npn for
defining them.
1651

1652 \cs_new:Npn \lngxpkg {
1653 \IfPackageLoadedTF { hyperref } {
1654 \texorpdfstring {
1655 \lngxlogo
1656 } {
1657 LinguisTiX
1658 }
1659 } {
1660 \lngxlogo
1661 }
1662 }

Here, I define all the logos with a clist. The package names are stored in the clist and
then used at appropriate positions.
1663

1664 \clist_map_inline:nn {
1665 base,examples,fixpex,fonts,ipa,languages,logos,nfss,
1666 marathi,british,american,english,greek,malayalam,glossing,
1667 leipzig
1668 } {

#1 is substituted with the package name. First, for the command-name itself, then as the
optional argument of \lngxlogo and then in the PDF-string.
1669 \cs_new:cpn { lngx #1 logo } {
1670 \texorpdfstring {
1671 \lngxlogo [#1]
1672 } {
1673 LinguisTiX - #1
1674 }
1675 }
1676 }
1677 ⟨/logos⟩

LinguisTiX-nfss Documentation | LATEX3-interface

1678 ⟨∗nfss⟩

69

1679 \ProvidesExplPackage{linguistix-nfss}
1680 {2026-01-19}
1681 {v0.7}
1682 {%
1683 An extension to the core NFSS commands
1684 from the ‘LinguisTiX’ bundle.%
1685 }

I need a few temporary tls. I declare them here. As noted by the use of __, these are
package-internal tls. Even though I don’t have any intention to change them, these are
better not touched by the users.
1686

1687 \tl_new:N \l__lngx_normalfont_tmp_tl
1688 \tl_new:N \l__lngx_selectfont_tmp_tl
1689 \tl_new:N \l__lngx_family_tmp_tl
1690 \tl_new:N \l__lngx_nfss_tmp_tl

These tls are required for saving some values that are accessed later by the package as
well as by the users.
1691

1692 \tl_new:N \l_lngx_current_encoding_tl
1693 \tl_new:N \l_lngx_current_meta_family_tl
1694 \tl_new:N \l_lngx_current_super_family_tl
1695 \tl_new:N \l_lngx_current_series_tl
1696 \tl_new:N \l_lngx_current_shape_tl

\c_lngx_default_rmdefault_tl
\c_lngx_default_sfdefault_tl
\c_lngx_default_ttdefault_tl

Here, I start the begindocument/end hook. After the document has started, a lot of
initialisation can be assumed to have happened. I set some publicly available tls here.
1697

1698 \hook_gput_code:nnn { begindocument / end } { . } {
1699 \tl_const:Ne \c_lngx_default_rmdefault_tl { \rmdefault }
1700 \tl_const:Ne \c_lngx_default_sfdefault_tl { \sfdefault }
1701 \tl_const:Ne \c_lngx_default_ttdefault_tl { \ttdefault }

(End of definition for \c_lngx_default_rmdefault_tl , \c_lngx_default_sfdefault_tl , and \c_lngx_-
default_ttdefault_tl. These functions are documented on page 20.)

\l_lngx_current_encoding_tl
\l_lngx_current_meta_family_tl

\l_lngx_current_super_family_tl
\l_lngx_current_series_tl
\l_lngx_current_shape_tl

First, I set the value default for the initial super font family.
1702 \tl_set:Nn \l_lngx_current_super_family_tl { default }

The current encoding is saved in the relevant tl.
1703 \tl_set:Ne \l_lngx_current_encoding_tl {
1704 \encodingdefault
1705 }

When the package was first released, there was no public interface for guessing the current
meta family, but from ltnews42, \@currentmetafamily became available. Thanks Frank
for pointing this out.
1706 \tl_set:Ne \l_lngx_current_meta_family_tl {
1707 \@currentmetafamily % new from ltnews42, thanks Frank!
1708 }

Here, the series and shape tls are set to their defaults.
1709 \tl_set:Nn \l_lngx_current_series_tl { md }
1710 \tl_set:Nn \l_lngx_current_shape_tl { up }
1711 }

70

(End of definition for \l_lngx_current_encoding_tl and others. These functions are documented on page
20.)
The \selectfont command overrides the encoding. I trick the command by saving the
encoding that was active before \selectfont in a temporary tl.
1712

1713 \hook_gput_code:nnn { cmd / selectfont / before } { . } {
1714 \tl_set:Ne \l__lngx_selectfont_tmp_tl { \f@encoding }
1715 }

After the processing of \selectfont, I equate the temporary tl with the one that the
package is tracking. This way, the effect of \selectfont remains unchanged, but we still
save the values that were there before using it. Only encoding needs this special setting.
Other attributes aren’t reset by \selectfont.
1716

1717 \hook_gput_code:nnn { cmd / selectfont / after } { . } {
1718 \tl_set_eq:NN \l_lngx_current_encoding_tl
1719 \l__lngx_selectfont_tmp_tl
1720 \tl_clear:N \l__lngx_selectfont_tmp_tl
1721 }

Now, after each \XXfamily commands, I save the family name in the respective tl for
accessing later. All of these commands too reset the encoding. I repeat my trick for them
too.
1722

1723 \hook_gput_code:nnn { cmd / rmfamily / before } { . } {
1724 \tl_set:Nn \l_lngx_current_meta_family_tl { rm }
1725 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1726 }
1727

1728 \hook_gput_code:nnn { cmd / rmfamily / after } { . } {
1729 \tl_set:Nn \l_lngx_current_meta_family_tl { rm }
1730 \tl_set_eq:NN \l_lngx_current_encoding_tl
1731 \l__lngx_family_tmp_tl
1732 \tl_clear:N \l__lngx_family_tmp_tl
1733 }
1734

1735 \hook_gput_code:nnn { cmd / sffamily / before } { . } {
1736 \tl_set:Nn \l_lngx_current_meta_family_tl { sf }
1737 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1738 }
1739

1740 \hook_gput_code:nnn { cmd / sffamily / after } { . } {
1741 \tl_set:Nn \l_lngx_current_meta_family_tl { sf }
1742 \tl_set_eq:NN \l_lngx_current_encoding_tl
1743 \l__lngx_family_tmp_tl
1744 \tl_clear:N \l__lngx_family_tmp_tl
1745 }
1746

1747 \hook_gput_code:nnn { cmd / ttfamily / before } { . } {
1748 \tl_set:Nn \l_lngx_current_meta_family_tl { tt }
1749 \tl_set:Ne \l__lngx_family_tmp_tl { \f@encoding }
1750 }
1751

1752 \hook_gput_code:nnn { cmd / ttfamily / after } { . } {

71

1753 \tl_set:Nn \l_lngx_current_meta_family_tl { tt }
1754 \tl_set_eq:NN \l_lngx_current_encoding_tl
1755 \l__lngx_family_tmp_tl
1756 \tl_clear:N \l__lngx_family_tmp_tl
1757 }

After the series commands, I save the series name in the tl. Note that, I don’t use the
traditional LATEX labels m, bx etc. Using, md and bx is more intuitive, plus they also can
be used in the argument of \use:c directly.
1758

1759 \hook_gput_code:nnn { cmd / mdseries / after } { . } {
1760 \tl_set:Nn \l_lngx_current_series_tl { md }
1761 }
1762

1763 \hook_gput_code:nnn { cmd / bfseries / after } { . } {
1764 \tl_set:Nn \l_lngx_current_series_tl { bf }
1765 }

For shape related commands too, I save the names that are more closer to their respective
commands.
1766

1767 \hook_gput_code:nnn { cmd / upshape / after } { . } {
1768 \tl_set:Nn \l_lngx_current_shape_tl { up }
1769 }
1770

1771 \hook_gput_code:nnn { cmd / itshape / after } { . } {
1772 \tl_set:Nn \l_lngx_current_shape_tl { it }
1773 }
1774

1775 \hook_gput_code:nnn { cmd / scshape / after } { . } {
1776 \tl_set:Nn \l_lngx_current_shape_tl { sc }
1777 }
1778

1779 \hook_gput_code:nnn { cmd / sscshape / after } { . } {
1780 \tl_set:Nn \l_lngx_current_shape_tl { ssc }
1781 }
1782

1783 \hook_gput_code:nnn { cmd / slshape / after } { . } {
1784 \tl_set:Nn \l_lngx_current_shape_tl { sl }
1785 }
1786

1787 \hook_gput_code:nnn { cmd / swshape / after } { . } {
1788 \tl_set:Nn \l_lngx_current_shape_tl { sw }
1789 }
1790

1791 \hook_gput_code:nnn { cmd / ulcshape / after } { . } {
1792 \tl_set:Nn \l_lngx_current_shape_tl { ulc }
1793 }

\lngx_if_encoding_p:n
\lngx_if_encoding:nTF

I provide a conditional for checking the current encoding with the given argument.
1794

1795 \prg_new_conditional:Nnn \lngx_if_encoding:n {
1796 p,
1797 T,

72

1798 F,
1799 TF
1800 } {
1801 \tl_if_eq:NnTF \l_lngx_current_encoding_tl { #1 } {
1802 \prg_return_true:
1803 } {
1804 \prg_return_false:
1805 }
1806 }
1807

(End of definition for \lngx_if_encoding:nTF. This function is documented on page 20.)

\IfEncodingTF
\IfEncodingT
\IfEncodingF

For non-LATEX3 contexts, these simpler alternatives are provided.
1808

1809 \cs_new_eq:NN \IfEncodingTF \lngx_if_encoding:nTF
1810 \cs_new_eq:NN \IfEncodingT \lngx_if_encoding:nT
1811 \cs_new_eq:NN \IfEncodingF \lngx_if_encoding:nF

(End of definition for \IfEncodingTF , \IfEncodingT , and \IfEncodingF. These functions are documented
on page 16.)

\lngx_if_meta_family_p:n
\lngx_if_meta_family:nTF

A conditional for checking the meta family with the given argument.
1812

1813 \prg_new_conditional:Nnn \lngx_if_meta_family:n {
1814 p,
1815 T,
1816 F,
1817 TF
1818 } {
1819 \tl_if_eq:NnTF \l_lngx_current_meta_family_tl { #1 } {
1820 \prg_return_true:
1821 } {
1822 \prg_return_false:
1823 }
1824 }

(End of definition for \lngx_if_meta_family:nTF. This function is documented on page 20.)

\IfMetaFamilyTF
\IfMetaFamilyT
\IfMetaFamilyF

User-facing conditionals for meta family.
1825

1826 \cs_new_eq:NN \IfMetaFamilyTF \lngx_if_meta_family:nTF
1827 \cs_new_eq:NN \IfMetaFamilyT \lngx_if_meta_family:nT
1828 \cs_new_eq:NN \IfMetaFamilyF \lngx_if_meta_family:nF

(End of definition for \IfMetaFamilyTF , \IfMetaFamilyT , and \IfMetaFamilyF. These functions are docu-
mented on page 16.)

\lngx_if_super_family_p:n
\lngx_if_super_family:nTF

A conditional for checking the super family with the given argument.
1829

1830 \prg_new_conditional:Nnn \lngx_if_super_family:n {
1831 p,
1832 T,
1833 F,
1834 TF

73

1835 } {
1836 \tl_if_eq:NnTF \l_lngx_current_super_family_tl { #1 } {
1837 \prg_return_true:
1838 } {
1839 \prg_return_false:
1840 }
1841 }

(End of definition for \lngx_if_super_family:nTF. This function is documented on page 20.)

\IfSuperFamilyTF
\IfSuperFamilyT
\IfSuperFamilyF

User-facing conditionals for super family.
1842

1843 \cs_new_eq:NN \IfSuperFamilyTF \lngx_if_super_family:nTF
1844 \cs_new_eq:NN \IfSuperFamilyT \lngx_if_super_family:nT
1845 \cs_new_eq:NN \IfSuperFamilyF \lngx_if_super_family:nF

(End of definition for \IfSuperFamilyTF , \IfSuperFamilyT , and \IfSuperFamilyF. These functions are
documented on page 16.)

\lngx_if_series_p:n
\lngx_if_series:nTF

A conditional for checking the current series with the given argument.
1846

1847 \prg_new_conditional:Nnn \lngx_if_series:n {
1848 p,
1849 T,
1850 F,
1851 TF
1852 } {
1853 \tl_if_eq:NnTF \l_lngx_current_series_tl { #1 } {
1854 \prg_return_true:
1855 } {
1856 \prg_return_false:
1857 }
1858 }

(End of definition for \lngx_if_series:nTF. This function is documented on page 20.)

\IfSeriesTF
\IfSeriesT
\IfSeriesF

Its user-side macros.
1859

1860 \cs_new_eq:NN \IfSeriesTF \lngx_if_series:nTF
1861 \cs_new_eq:NN \IfSeriesT \lngx_if_series:nT
1862 \cs_new_eq:NN \IfSeriesF \lngx_if_series:nF

(End of definition for \IfSeriesTF , \IfSeriesT , and \IfSeriesF. These functions are documented on page
16.)

\lngx_if_shape_p:n
\lngx_if_shape:nTF

A conditional for checking the current shape with the current argument.
1863

1864 \prg_new_conditional:Nnn \lngx_if_shape:n {
1865 p,
1866 T,
1867 F,
1868 TF
1869 } {
1870 \tl_if_eq:NnTF \l_lngx_current_shape_tl { #1 } {
1871 \prg_return_true:

74

1872 } {
1873 \prg_return_false:
1874 }
1875 }

(End of definition for \lngx_if_shape:nTF. This function is documented on page 20.)

\IfShapeTF
\IfShapeT
\IfShapeF

User-side macros for the same.
1876

1877 \cs_new_eq:NN \IfShapeTF \lngx_if_shape:nTF
1878 \cs_new_eq:NN \IfShapeT \lngx_if_shape:nT
1879 \cs_new_eq:NN \IfShapeF \lngx_if_shape:nF

(End of definition for \IfShapeTF , \IfShapeT , and \IfShapeF. These functions are documented on page 16.)
Now I will use the \clist_map_inline:nn technique for generating multiple condi-

tionals of the same pattern. For that, I need a cnn variant of \prg_new_conditional:Nnn
that I create with the following.
1880

1881 \cs_generate_variant:Nn \prg_new_conditional:Nnn { cnn }

\lngx_if_meta_family_rm_p:
\lngx_if_meta_family_rm:TF
\lngx_if_meta_family_sf_p:
\lngx_if_meta_family_sf:TF
\lngx_if_meta_family_tt_p:
\lngx_if_meta_family_tt:TF

These are separate conditionals for rm, sf and tt families. They don’t require arguments.
No user side commands are provided for these.
1882

1883 \clist_map_inline:nn {
1884 rm,
1885 sf,
1886 tt
1887 } {
1888 \prg_new_conditional:cnn { lngx_if_meta_family_ #1 : } {
1889 p, T, F, TF
1890 } {
1891 \tl_if_eq:NnTF \l_lngx_current_meta_family_tl { #1 } {
1892 \prg_return_true:
1893 } {
1894 \prg_return_false:
1895 }
1896 }
1897 }

(End of definition for \lngx_if_meta_family_rm:TF , \lngx_if_meta_family_sf:TF , and \lngx_if_meta_-
family_tt:TF. These functions are documented on page 20.)

\lngx_if_series_md_p:
\lngx_if_series_md:TF
\lngx_if_series_bf_p:
\lngx_if_series_bf:TF

Separate conditionals for both the series.
1898

1899 \clist_map_inline:nn {
1900 md,
1901 bf
1902 } {
1903 \prg_new_conditional:cnn { lngx_if_series_ #1 : } {
1904 p, T, F, TF
1905 } {
1906 \tl_if_eq:NnTF \l_lngx_current_series_tl { #1 } {
1907 \prg_return_true:
1908 } {

75

1909 \prg_return_false:
1910 }
1911 }
1912 }

(End of definition for \lngx_if_series_md:TF and \lngx_if_series_bf:TF. These functions are documented
on page 21.)

\lngx_if_shape_up_p:
\lngx_if_shape_up:TF
\lngx_if_shape_it_p:
\lngx_if_shape_it:TF
\lngx_if_shape_sc_p:
\lngx_if_shape_sc:TF

\lngx_if_shape_ssc_p:
\lngx_if_shape_ssc:TF
\lngx_if_shape_sl_p:
\lngx_if_shape_sl:TF
\lngx_if_shape_sw_p:
\lngx_if_shape_sw:TF

\lngx_if_shape_ulc_p:
\lngx_if_shape_ulc:TF

Separate conditionals for all the shapes.
1913

1914 \clist_map_inline:nn {
1915 up,
1916 it,
1917 sc,
1918 ssc,
1919 sl,
1920 sw,
1921 ulc
1922 } {
1923 \prg_new_conditional:cnn { lngx_if_shape_ #1 : } {
1924 p, T, F, TF
1925 } {
1926 \tl_if_eq:NnTF \l_lngx_current_shape_tl { #1 } {
1927 \prg_return_true:
1928 } {
1929 \prg_return_false:
1930 }
1931 }
1932 }

(End of definition for \lngx_if_shape_up:TF and others. These functions are documented on page 21.)
These keys are used in the argument of \lngx_super_font_family:nn. This is why

they are separated from the set lngx_keys. We create new tls using these keys that
save the rm, sf and tt defaults of the new super font family. \l__lngx_nfss_tmp_tl is
defined by the command that creates the super font family.
1933

1934 \clist_map_inline:nn {
1935 rm,
1936 sf,
1937 tt
1938 } {
1939 \keys_define:nn { lngx_nfss } {
1940 #1
1941 .code:n = {
1942 \tl_gclear_new:c {
1943 g_lngx_ \l__lngx_nfss_tmp_tl _ #1 default _tl
1944 }
1945 \tl_gset:cn {
1946 g_lngx_ \l__lngx_nfss_tmp_tl _ #1 default _tl
1947 } { ##1 }
1948 }
1949 }
1950 }

76

\lngx_super_font_family:nn
\superfontfamily

I first set the temporary tl with the name of the super font family retrieved from the
first argument.
1951

1952 \cs_new_protected:Npn \lngx_super_font_family:nn #1#2 {
1953 \tl_set:Ne \l__lngx_nfss_tmp_tl { #1 }

Now, I pass the second argument to the key-set I just defined. The temporary tl is
cleared. This function comes with a user-side macro.
1954 \keys_set:nn { lngx_nfss } { #2 }
1955 \tl_clear:N \l__lngx_nfss_tmp_tl
1956 }
1957

1958 \cs_gset_eq:NN \superfontfamily
1959 \lngx_super_font_family:nn

(End of definition for \lngx_super_font_family:nn and \superfontfamily. These functions are documented
on page 21.)

\lngx_soft_super_font_family:nn
\softsuperfontfamily

I set the tl that saves the current font family to the first argument.
1960

1961 \cs_new_protected:Npn \lngx_soft_super_font_family:nn #1#2 {
1962 \tl_set:Ne \l_lngx_current_super_family_tl { #1 }

I first check if the tls for rm, sf and tt are empty or not. Only if they are not, I use their
content in the respective \XXdefault. This makes the use of all the keys optional. Only
the keys that the user has used are processed here.
1963 \clist_map_inline:nn {
1964 rm,
1965 sf,
1966 tt
1967 } {
1968 \tl_if_empty:cF { g_lngx_ #1 _ ##1 default_tl } {
1969 \cs_set:cpe { ##1 default } {
1970 \tl_use:c { g_lngx_ #1 _ ##1 default _tl }
1971 }
1972 }
1973 }

After setting the \XXdefault, I use the \normalfont to initialise the super font family.
1974 \normalfont

Now all the aspects are reset. But, we have them saved in our tls. So now depending on
the attributes that the user wants to retrieve, I call those attributes again. The second
argument is (expected to be) a comma-separated list of all such attributes. Thus, we
change the super font family, but retain the already active attributes. This command has
a user-facing macro.
1975 \clist_map_inline:nn { #2 } {
1976 \str_case:nn { ##1 } {
1977 { encoding } {
1978 \exp_args:NV \fontencoding
1979 \l_lngx_current_encoding_tl
1980 }
1981 { family } {
1982 \use:c {
1983 \l_lngx_current_meta_family_tl family

77

1984 }
1985 \exp_args:NV \fontencoding
1986 \l_lngx_current_encoding_tl
1987 \selectfont
1988 }
1989 { series } {
1990 \use:c {
1991 \l_lngx_current_series_tl series
1992 }
1993 }
1994 { shape } {
1995 \use:c {
1996 \l_lngx_current_shape_tl shape
1997 }
1998 }
1999 }
2000 }
2001 }
2002

2003 \cs_gset_eq:NN \softsuperfontfamily
2004 \lngx_soft_super_font_family:nn

(End of definition for \lngx_soft_super_font_family:nn and \softsuperfontfamily. These functions are
documented on page 21.)

\lngx_softer_super_font_family:n
\softersuperfontfamily

This function excludes the encoding and resets all the other attributes. It comes with a
user-side macro.
2005

2006 \cs_new_protected:Npn \lngx_softer_super_font_family:n #1 {
2007 \lngx_soft_super_font_family:nn { #1 } {
2008 family,
2009 series,
2010 shape
2011 }
2012 }
2013

2014 \cs_gset_eq:NN \softersuperfontfamily
2015 \lngx_softer_super_font_family:n

(End of definition for \lngx_softer_super_font_family:n and \softersuperfontfamily. These functions
are documented on page 21.)

\lngx_softest_super_font_family:n
\softestsuperfontfamily

This function resets all the attributes. It is available as a user-side macro.
2016

2017 \cs_new_protected:Npn \lngx_softest_super_font_family:n #1 {
2018 \lngx_soft_super_font_family:nn { #1 } {
2019 encoding,
2020 family,
2021 series,
2022 shape
2023 }
2024 }
2025

2026 \cs_gset_eq:NN \softestsuperfontfamily
2027 \lngx_softest_super_font_family:n

78

(End of definition for \lngx_softest_super_font_family:n and \softestsuperfontfamily. These functions
are documented on page 21.)

\lngx_soft_normal_font:n
\softnormalfont

Following the same logic, I now provide the command for resetting to the default super
family, but retaining the active attributes. I provide a user-side macro for this.
2028

2029 \cs_new_protected:Npn \lngx_soft_normal_font:n #1 {
2030 \tl_set:Ne \l_lngx_current_super_family_tl { default }
2031 \clist_map_inline:nn {
2032 rm,
2033 sf,
2034 tt
2035 } {
2036 \cs_set:cpe { ##1 default } {
2037 \tl_use:c { c_lngx_default_ ##1 default _tl }
2038 }
2039 }
2040 \normalfont
2041 \clist_map_inline:nn { #1 } {
2042 \str_case:nn { ##1 } {
2043 { encoding } {
2044 \exp_args:NV \fontencoding
2045 \l_lngx_current_encoding_tl
2046 }
2047 { family } {
2048 \use:c {
2049 \l_lngx_current_meta_family_tl family
2050 }
2051 \exp_args:NV \fontencoding
2052 \l_lngx_current_encoding_tl
2053 \selectfont
2054 }
2055 { series } {
2056 \use:c {
2057 \l_lngx_current_series_tl series
2058 }
2059 }
2060 { shape } {
2061 \use:c {
2062 \l_lngx_current_shape_tl shape
2063 }
2064 }
2065 }
2066 }
2067 }
2068

2069 \cs_gset_eq:NN \softnormalfont \lngx_soft_normal_font:n

(End of definition for \lngx_soft_normal_font:n and \softnormalfont. These functions are documented
on page 21.)

\lngx_softer_normal_font:
\softernormalfont

This is a parallel to the ‘softer’ super family command for the default super family.
2070

2071 \cs_new_protected:Npn \lngx_softer_normal_font: {

79

2072 \lngx_soft_normal_font:n {
2073 family,
2074 series,
2075 shape
2076 }
2077 }
2078

2079 \cs_gset_eq:NN \softernormalfont \lngx_softer_normal_font:

(End of definition for \lngx_softer_normal_font: and \softernormalfont. These functions are documented
on page 21.)

\lngx_softest_normal_font:
\softestnormalfont

This is a parallel to the ‘softest’ super family command for the default super family.
2080

2081 \cs_new_protected:Npn \lngx_softest_normal_font: {
2082 \lngx_soft_normal_font:n {
2083 encoding,
2084 family,
2085 series,
2086 shape
2087 }
2088 }
2089

2090 \cs_gset_eq:NN \softestnormalfont \lngx_softest_normal_font:

(End of definition for \lngx_softest_normal_font: and \softestnormalfont. These functions are docu-
mented on page 21.)

\CurrentEncoding
\CurrentMetaFamily

\CurrentSeries
\CurrentShape

Lastly, we create the commands that print the current values of the font attributes and
end the package.
2091 \cs_new:Npn \CurrentEncoding {
2092 \tl_use:N \l_lngx_current_encoding_tl
2093 }
2094 \cs_new:Npn \CurrentMetaFamily {
2095 \tl_use:N \l_lngx_current_meta_family_tl
2096 }
2097 \cs_new:Npn \CurrentSuperFamily {
2098 \tl_use:N \l_lngx_current_super_family_tl
2099 }
2100 \cs_new:Npn \CurrentSeries {
2101 \tl_use:N \l_lngx_current_series_tl
2102 }
2103 \cs_new:Npn \CurrentShape {
2104 \tl_use:N \l_lngx_current_shape_tl
2105 }
2106 ⟨/nfss⟩

(End of definition for \CurrentEncoding and others. These functions are documented on page 16.)

References
Bringhurst, Robert (2004). The elements of typographic style. 4th ed. Point Roberts, WA:

Hartley & Marks, Publishers.

80

Munn, Alan and Enrico Gregorio (5th Dec. 2023). ExPex fails with unicode-math. How
to avoid the clash? URL: https://tex.stackexchange.com/q/703094 (visited on
21/12/2025).

81

https://tex.stackexchange.com/q/703094

	1 Introduction
	2 Planned
	3 Funding
	4 Acknowledgements
	5 LinguisTiX-base
	6 LinguisTiX-fixpex
	7 LinguisTiX-fonts
	8 LinguisTiX-glossing
	9 LinguisTiX-ipa
	10 LinguisTiX-languages
	11 LinguisTiX-logos
	12 LinguisTiX-nfss

