The Lincuis’CiX bundle

s

19 January 2026 (vo.7)

A

https://ctan.org/pkg/linguistix

@ https://puszcza.gnu.org.ua/projects/linguistix

£ https://matrix.to/#/#linguistix:matrix.org

There are quite a few INTEX packages that support typesetting in linguistics, but
most of them lack a modern EMTEX-like users syntax as well as a programming interface.
The LineuisCiX bundle fills this gap. It contains several packages enhancing the
general support for linguistics in "TEX. This is a comprehensive documentation of the
same comprising of three parts. The first one is the general users manual, the second
one documents the programming interface of the bundle, whereas the last one is the
documented implementation of all the packages.

Contents

I Introduction
2 Planned

3 Funding

4 Acknowledgements

5 Lineuis'CiX-8ase

Interface... 17; Implementation... 23

6 LineuisCiX-Fixpex

Interface... 18; Implementation... 24

d LineuisCiX-Foncs

Interface... 18; Implementation... 26

The LineursCiX bundle
Copyright © 2025, 2026 AR

Abstract

3 8
9
10
1I

5 I2

LineuisCiX-cLossiNe

Interface... 18; Implementation...

LineuisCiX-1pa

Interface... 19; Implementation...

LineuisCiX-Laneuaces

Interface... 19; Implementation...

LineuisCiX-Locos

Interface... 20; Implementation...

LineursCTiX-NFss

Interface... 20; Implementation...

36

BI

61

68

69

I2

4

14

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version g of the License, or (at your option)

any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public

License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see

https://www.gnu.org/licenses/.

https://ctan.org/pkg/linguistix
https://puszcza.gnu.org.ua/projects/linguistix
https://matrix.to/#/#linguistix:matrix.org
https://www.gnu.org/licenses/

Dedicated to Renuka who taught me rigour under the guise of linguistics...

1 Introduction

Linguistics is a discipline that studies the phenomenon of language and for this linguists
analyse data from languages across the globe. In order to be able to present the data
that is collected for this, linguists use several representational methods that lead to a
fiasco when their typesetting is considered. In order to understand the complexity of the
task at hand, first, let’s have a look at some of the problem cases. If you are an impatient
reader and are just willing to read the users manual, you may skip reading the current
section and start with section 5 and the ones following it.

1 Phonetic symbols

Speech sounds are the building blocks of many human languages and the data collected
from languages demands an unambiguous method of representation which is served by
the International Phonetic Alphabet. For the longest time, the TIPA package (https:
//ctan.org/pkg/tipa) was the one that produced phonetic symbols in (I2)TEX. Visually,
it matches the default Computer Modern design of ()TEX, but TIPA is not Unicode. It
is set in a legacy encoding. With the recent developments, the New Computer Modern
family supports all the IPA characters (even the ones that are missing in TIPA). They are
created keeping in mind the principles of Knuth’s Computer Modern. Additionally, the
family also supports sans serif (recommended in presentations) and mono (recommended
in coding context) families. It supports two weights, i.e., book and regular respectively.
The book weight is slightly thicker than the regular weight, but the regular one matches
the thickness of the Computer Modern design. Because of the increased thickness, the
former looks better. The current document, for example, is typeset in the book weight of
New Computer Modern. If you are like me, you probably don’t like using non-ETEX-fonts.
The good news is that the requirements of linguistics are very well fulfilled by the recent
developments in the New Computer modern family and it does belong to the fraternity of
ETEX-fonts.

Apart from this, there are some other advantages of the New Computer Modern fonts.
The 1PA distinguishes between [a] and [a], but unfortunately, in Italic shape, the latter is
a variant of the former. E.g., [a\textit{a}] produces ‘[aa]’. Whenever an author uses
Ttalic shape for their transcription and use a, a wrong IPA symbol is printed with most
fonts. This problem was kindly acknowledged by Antonis Tsolomitis, the developer of
New Computer Modern. In the stylistic set dedicated for linguistics, the correct shape
was added to the Italic shape by him. Thus, \ipatext{a\textit{a}} (a command from
LiveursCiX-1pa) renders ‘[aa]’. The package enables New Computer Modern family with
stylistic set of dedicated for 1PA. It also adds the brackets or slashes around the argument
as explained in section g.

A similar problem is with the character g. E.g., [g\textit{g}] produces ‘[gg]. Here,
the situation is the other way round. The upright ‘g’ is not recognised by the 1PA. The
IPA charts generally have the upright version of the Italic shape. To see what this means,
try \ipatext{g\textit{g}}. It produces [gg] and not [gg].

In order to avail all of these features, I have set New Computer Modern as the default
font-family of LineursCiX. The bundle provides options to control these defaults. Users
can use their preferred text and 1PA fonts. There also is an option to use the regular
weight of NewCM instead of the book weight.

https://ctan.org/pkg/tipa
https://ctan.org/pkg/tipa

2 Planned

I plan to develop this bundle further in order to support the typesetting of good quality
examples with interlinear glossing. My model is to imitate the output of the expex package,
but with a modern M TEX-like syntax.

3 Funding

I am a doctorate student without a fellowship (thanks to our education policies!) currently
sustaining only with a full time job unrelated to linguistics that consumes most of my
working hours. At times, it becomes difficult to continue the research, the job and the
passion development projects. LineuisCiX needs funding in order to sustain. If you think
you can support it, you can contact me on the email 1D found on the front page.

As of 2025-05-29, I have recieved funding from the TEX users group’s TEX develop-
ment fund. They have decided to support the development of ‘linguistix-glossing’ (the
logo will be available once the package is ready).

An experimental version of LineuisCrX-cLossine is released on 2026-01-19. This
version is for testing and getting feedback from the community. This marks the completion
of the first grant provided by the TEX users group’s. The project will still continue to
develop further, so funding initiatives will be highly appreciated.

4 Acknowledgements

This package relies the most on the New Computer Modern font family. I would like to
express my gratitude to Antonis Tsolomitis who tirelessly worked on the set of IPA symbols
and brought back the good old charm of TIPA’s design in the modern Unicode world.
I would like to thank Renuka and Avinash who taught me linguistics. They nourished
my passion, helped me pursue my love for the subject as well as the computation that
came along with it. I could have never imagined myself working on a package written in
ETEX3’s syntax. Not so long ago, I used to find it very complicated. It’s mostly Jonathan
Spratte and Florent Rougon’s help (and, at times, scolding :P) that helped me get used
to it. I would also like to mention C.V. Radhakrishnan for being an important part of my
journey in IMTEX. Lastly, to all the free software people who have created this friendly
and supportive world for people by investing their precious time and resources!

Hardly in a week after the initial release, the TEX users group decided to financially
support the development of a planned package in the bundle. I am grateful to them for
their support.

Documentation

The bundle is comprised of several packages that are developed for different purposes. In
order to load all the packages of the bundle, one can issue:

\usepackage{linguistix}

This is the easiest method for getting all of LineuisCiX in one go. But, if you don’t
need all the packages of the bundle, you may load the required packages separately. We
will start with the elementary package that sets up things for other packages of the bundle.

5 Line UIS’CIX-BASG: ATEX 3-interface | Implementation

This package provides a single command that is used in all the other packages of the
bundle. The command is:

\linguistix {(key-value-list)}

\umgla

\LaTeX
\ogLaTeX

We have a single set of keys for the entire bundle. Each package appends keys to the
same set. The argument of this central processor command is the comma-separated
(key-value-1ist). So you can load any package of LineuisTiX and use the \linguistix
command. The only exception to this is LineuisCiX-nrss. We will see how it is different
in its section.

6 LINGUISCIX-FIXP@X MTEX 3-interface | Implementation

This package offers a fix for the clash between expex and unicode-math. It provides a
single command.

This is a replica of the unicode-math-\gla. Since the expex-\gla is more relevant in
linguistics, I set it as the default. If one needs to use unicode-math-\gla, they can use
this command.

é LINGUIS’CIX-FON'CS IMTEX 3-interface | Implementation

This is a package that loads the New Computer Modern family for the entire document.
The package sets fonts for both text and math. It has keys for customisation for both.
Note that just loading this package does not provide any support for 1PA. For that one
needs LineursCrX-1pa separately.

Antonis suggested a typographic enhancement for the logo of *TEX. The default
logo scales the ‘A’ and that affects the ‘colour’ of the font. This is why I renew the logo
with the code given by Antonis. The original logo is also available with an alternative
command.

IMTEX
BTEX

The package provides only these commands. Let’s now have a look at the keys
provided for the text.

1 Text

Most keys of this package are prefixed with the text in order to distinguish them from
the maths and 1PA ones. There aren’t any commands provided by the package. Most of
the important features of the fontspec packakge are variablised with I3keys.

The ‘old style numbers’ have varying heights. Some numbers have ascenders and
some have descenders (e.g., 6789). According to Bringhurst 2004, this makes them easier
to read in running text. Lining numbers, on the other hand have uniform heights. They
go well with all capital text (rare). Thus, for the general text, I enable this setting by
default in LineuisCiX-roncs.

old style numbers
old style one

newcm
newcm
newcm
newcm
newcm
newcm

sans
mono

regular
regular sans
regular mono

math

math features
math bold
math bold features

Apart from that, the New Computer Modern font family provides an old-style shape
for the number ‘T’ (this exact shapel!), but it is provided as a character variant. Different
fonts may use these arbitrary slots for any character’s alternation. Therefore this setting
should not be loaded blindly. Let’s have a look at the keys that can be employed to
change these behaviours.

{(truth value)} true | false
{(truth value)} true | false

If one wants to disable old style numbers, they may use the 01d style numbers key with
the false value (default is true)’. Note that printing of old style numbers also depends
on whether the font you select has old style numbers or not. The relevant settings are
added by the package to the font automatically, but while selecting the font, make sure
whether the old style table is present in the font or not.

Suppose one wants the alternative shape of number ‘1’ from the New Computer
Modern family, they may use the key old style one (default is false; adding true is
optional).

Let’s have a look at the three way distinction we get because of this.

0123456789 01d style with default 1
0123456789 0ld style with the old 1
0123456789 Lining

These are some keys that come in handy for setting New Computer Modern defaults. All
the necessary values are stored in these. The keys that have regular in their names refer
to the ‘regular’ variants of New Computer Modern fonts. These variants match the colour
and widths of the Latin Modern fonts. One may use these keys to override the defaults.

2 Maths

LineuisCiX-roncs sets maths fonts also. In order to control the settings related to maths,
the following keys can be used.

{{math font)}

= {(math font features)}
{(bold math font)}

= {(bold math font features)}

The math and math bold keys set the respective fonts (i.e., regular and bold fonts for
mathematics respectively). The keys suffixed with features set the font features of the
same.

'The possible and the default values of keys are given at the right side in the documentation and the defaults
are highlighted in red.

bourbaki's empty set

= {(truth value)} true | false

In ()TEX, the default shape of the ‘empty set’ symbol is: ‘D’, but the symbol used by
the Bourbaki group is still considered more correct and preferred by many (including
me). New Computer Modern Math fonts provide it by default and the slashed zero is
provided as a character variant. Since the Unicode-correct \emptyset is activated by
the package, it always renders: ‘@’ and not: ‘Q’. In order to change this behaviour, one
may use this key and set it to false for getting the slashed-zero of original (E)TEX. Hail
plumbers union, IYKYK! ;-)

8 LineuisCiX-eLossiNG W TEX g-interface | Tmplementation

This package provides a suit for creating interlinear glosses. It is supported by TEX users
group’s devfund. The package attempts to be an all-in-one solution for glossing. It doesn’t
provide any particular glosses. It only provides a method to create them. Using it, one
may easily create packages like LincuisCiX-Leipzie to support a set of glosses. The glosses
created by the package use the new code of the INTEX project as they are created in a
tagging aware manner. Each gloss sets a hyperlink to its position in the list of glosses.
Let’s take a look at its commands and options.

\glx {(comma separated list of glosses)}
\glx* {(comma separated list of glosses)}

This simple commands take a comma separated as their argument. All the items from the
list are glosses (either created by the user or provided by a package). Cases are ignored.
Spaces around the glosses are ignored. The regular unstarred command prints the glosses
of each of the item in the comma separated list, whereas the starred variant prints their
expansions. Have a look at the following example.

\DocumentMetadata{tagging=on,lang={en-GB}}
\documentclass{article}
\usepackage{linguistix-glossing}
\newgloss{prs}{present tense}
\newgloss{pst}{past tense}

\begin{document}
\glx{prs,pst}\par
\glx{ prs, pst }\par
\glx{ Prs,pSt}

\glx*{prs,pst}\par
\glx*{ prs, pst }\par
\glx*{ Prs,pST}
\end{document}

This example produces identical output in three lines for glosses and the same for its
expansions. Notice that there is no format to the cases of the glosses and similarly one
level of spaces are trimmed.

\newgl

0oss

{(gloss)} {(ezpansion)}

\renewgloss {(gloss)} {(ezpansion)}

These commands create a new gloss or renew an existing gloss. They can be accessed
with the \glx command as explained above. Using \renewgloss mid-document is not
recommended. It will erase the data of page numbers for the previous version of it.

\setupglossing {(keys for formatting glosses)}

\listofgl

form
glos
expa

link

expansion

osses

at
s
nsion

color

sort

case

style

This command takes one argument, i.e., the keys that control everything regarding the
use of glosses and their expansions. The keys it takes are described in the section that
follows.

[(setup keys)]

This command prints the list of glosses using the default settings. If the optional argument
is used, the adjustments are made locally only for a single run.

1 Setting up the glosses

The following keys can be passed to the command \setupglossing. They control the
printing along with a lot of other things regarding glosses. All the customisation offered
by the package can be accessed via this command.

= {(formatted element gloss/ezpansion)}
{(formatting commands for glosses)} \textsc{#1}
= {(formatting commands for glosses)}

The format key is used for setting the format of either gloss or expansion. It’s a meta key
that takes other key-val pairs in the argument. The nested keys control the formatting of
the respective elements. No special formatting is applied to expansions, but glosses are
by default printed in \textsc. These are the defaults of gloss and expansion.

= {(link colom)} black

This option locally sets the colour for the hyperlinks. By default they are set to the black
colour.

= {(sorting style)} alphabetical | use

This key controls how the keys printed in the list of glosses are ordered. They may be
ordered alphabetically or following the sequence in which they were used, the former
being the default.

= {(case)} lowercase | title case all | title case first

The expansion can be printed in one of these three cases. The default printing happens
in lowercase.

= {(glossary style)} block | inline

The package offers two styles. The inline style prints the glosses and their expansions
without page numbers in the flowing text, whereas the block style, in default settings
prints them in a multicolumn block with an unnumbered section with the glossary name.

columns

page numbers

sectioning

section number

no bold

separator

entry separator

= {(number of columns)} 2

The block style of glosses is printed in multicolumn layout by default. If the number of
columns has to be adjusted, this key shall be used. The default value of it is 2. It works
with only one column too.

= {(truth value)} true | false

By default, page numbers on which a particular gloss was used are printed in the block
style. This can be turned off with this bool key.

= {(section level)} section

In block style, a section heading is printed. In order to choose the level of sectioning,
this command can be used. The default is section which can be changed to any other
desired level. In addition the key allows an option null which suppresses the use of any
section heading.

= {(truth value)} true | false

By default, the section number for the glossary is turned off, but if one wants to print it,
this bool key can be used with the true value.

= {(truth value)} true | false

Generally, the glosses are printed in bold inside glossary. Some fonts don’t have bold
small caps (e.g., Latin Modern). If you need to stick to them, you can use this inverse
bool key with true value in order to obtain non-bold glosses.

= {(separator between glosses or ezpansions)}

This is a meta key. If used with \glx, then it sets the separator between the glosses (,
is the default). If used with \glx*, it sets the separator between the expansions (,, is
the default) and if used with the \listofglosses, it sets the separator between glosses
and their expansions (: is the default).

= {(separator between pairs of glosses and ezpansions)}

Each pair of gloss and its expansion is separated using a token list controlled by this list.
The default is \par.

9 LINGU.IS'CIX-IPA IMTEX g-interface | Implementation

This package sets the fonts exclusively for the 1PA. The commands provided for switching
to the 1PA control all serif, sans serif and typewriter families. This package can be loaded
standalone for loading 1PA fonts as well as some switch commands useful in running
text. New Computer Modern provides a special stylistic set dedicated for linguistics. It
is enabled for 1PA fonts automatically with this package. Only the legally marked up
IPA is affected by the customisation provided by this package. For switching to the 1PA,
LineuisCiX-1pa provides one command with a starred variant.

\ipatext {(phonetic transcription)}
\ipatext* {(phonemic transcription)}

\1lngxipa

ipa
ipa
ipa
ipa
ipa
ipa

newcm
newcm
newcm
newcm
newcm
newcm

sans
mono

regular
regular sans
regular mono

This is a command that resembles with the TIPA command \textipa. I have deliberately
kept it distinct from it so that just in case somebody wants to use their old TIPA
code in a Unicode document, the commands won’t clash (I highly discourage doing
this, though). The command comes with a starred variant. The behaviour of the un-
starred command is to print the argument in brackets for phonetic transcription, e.g.:
\ipatext{azr p"i: er} — [a1 phi: el] whereas the starred version prints it in slashes for
phonemic transcription, e.g.: \ipatext*{ar pti: er} — /aj phi: e1/.

Suppose someone just wants to load the font without the brackets or slashes, they can
use the following command for switching to the IPA without adding the aforementioned.

This also is a command that switches to the 1PA-only features (default as well as user
added). This command, of course, leaks and that’s why should be delimited. E.g., the
following code lines produce [a1 phi: ef] and /a1 phi: e1/ respectively:

exl}

er/}

{\lngxipa [ar p"i
{\lngxipa /ar phi

These keys reset the 1PA-only fonts to New Computer Modern. They can be used even for
resetting to New Computer Modern from another 1PA font. In order to change or reset
to the 1PA defaults these keys can be used. They store the names of the New Computer
Modern font family in the variables concerning 1PA. The keys that contain regular in
their name use the regular version of New Computer Modern that matches the colour of
Latin Modern.

Let’s now see the combined table of font keys provided by both LineuisTiX-roncs
and LincuisCiX-1pa.

Family LineuisCiX-rFoncs LineursCrX-1pa
Serif text main font ipa main font
text upright ipa upright
text upright features ipa upright features
text bold upright ipa bold upright
text bold upright features ipa bold upright features
text italic ipa italic
text italic features ipa italic features
text bold italic ipa bold italic
text bold italic features ipa bold italic features
text slanted ipa slanted
text slanted features ipa slanted features
text bold slanted ipa bold slanted
text bold slanted features ipa bold slanted features
text swash ipa swash
text swash features ipa swash features

Continued on the next page...

I0

Family LinecuisCiX-rFoncs LineursCrX-1pa

text bold swash ipa bold swash
text bold swash features ipa bold swash features
text small caps ipa small caps
text small caps features ipa small caps features
Sans serif text sans font ipa sans font
text sans upright ipa sans upright
text sans upright features ipa sans upright features
text sans bold upright ipa sans bold upright
text sans bold upright features ipa sans bold upright features
text sans italic ipa sans italic
text sans italic features ipa sans italic features
text sans bold italic ipa sans bold italic
text sans bold italic features ipa sans bold italic features
text sans slanted ipa sans slanted
text sans slanted features ipa sans slanted features
text sans bold slanted ipa sans bold slanted
text sans bold slanted features ipa sans bold slanted features
text sans swash ipa sans swash
text sans swash features ipa sans swash features
text sans bold swash ipa sans bold swash
text sans bold swash features ipa sans bold swash features
text sans small caps ipa sans small caps
text sans small caps features ipa sans small caps features
Monospaced text mono font ipa mono font
text mono upright ipa mono upright
text mono upright features ipa mono upright features
text mono bold upright ipa mono bold upright
text mono bold upright features ipa mono bold upright features
text mono italic ipa mono italic
text mono italic features ipa mono italic features
text mono bold italic ipa mono bold italic
text mono bold italic features ipa mono bold italic features
text mono slanted ipa mono slanted
text mono slanted features ipa mono slanted features
text mono bold slanted ipa mono bold slanted
text mono bold slanted features ipa mono bold slanted features
text mono swash ipa mono swash
text mono swash features ipa mono swash features
text mono bold swash ipa mono bold swash
text mono bold swash features ipa mono bold swash features
text mono small caps ipa mono small caps
text mono small caps features ipa mono small caps features

End of the table...

Table 1: Font keys provided by LineuisCiX-roncs and LineuisCiX-ipa

Apart from these, both the packages provide the following keys for appending to the

II

extra features for the respective fonts:

e text extra features

e text sans extra features
e text mono extra features
e ipa extra features

e ipa sans extra features

e ipa mono extra features

I0 LINGUIS’CIX-LANGUAGGS IATEX 3-interface | Implementation

This package is intended to provide support for loading Unicode fonts as well as other
necessary settings for using languages. It is a wrapper around the babel package, but it
provides some other useful settings which babel doesn’t agree to add. This package is a
little opinionated and pushes for ‘modern’ practices e.g., Unicode, Lual®TEX, no-markup
multilingual text etc. As of now, only a little support is available. If you want your
language to be supported, you can ask for support at the bug tracker of the repository or
you can send an email in the public mailing list for the project. You may subscribe to the
mailing list at: mail.gnu.org.ua/mailman/listinfo/linguistix-languages. Here, I
list down some IATX-aspects that may demand some modifications in the default settings.

Fonts: The package works with Unicode and does not worry about legacy methods. If
you want support for your language, first and foremost, you should let me know
standard OpenType fonts suitable for your language. Note that they should be
freely licensed. I won’t support proprietary software with LineursCrX.

babel support: As mentioned before, the package adds on to the support provided by
package babel. So check if the language files —specifically the modern . ini files—have
the correct settings. Sometimes they may need to undergo native-speakers scrutiny.
Whatever is wrong in babel, may not get corrected in LincuisCiX.

Numbers: ITEX uses a lot of counters and all of them, by default, print Latin nu-
merals/characters. E.g., \arabic{pagel} prints the page number in Latin, but
\roman{page} prints the same in Roman convention, i.e., ‘i, ii, ... Does your

language allow them? E.g., Greek doesn’t like Latin alphabets, but doesn’t mind

Roman numerals. Instead of Latin alphabets, Greek prefers to use its own numeral

system. Marathi doesn’t like any of these, but it doesn’t have alternative forms

of numeration, so it changes certain cases drastically. E.g., in nested enumerate
environment, Marathi renews the printing of nested \items as 1, 1.1, 1.1.1 and I.I.I.I.

This is reset to defaults when the language is changed. Keeping this in mind, I am

listing down some places where I found non-native numbering (I might have missed

something in which case it deserves to be reported as a bug, so feel free to do so!).

1. Page numbers (in front matter, main matter).
2. Part numbers.

3. Second, third and fourth levels of enumeration.

I2

mail.gnu.org.ua/mailman/listinfo/linguistix-languages

languages
\loadlanguages

\providelanguage

native numbering

strict

ExPex: Labels provided by ExPex package (see: tex.stackexchange.com/a/548668).

Typography: Language-specific conventions like using Italic for emphasis. It is a Latin-
script specific convention (note that I don’t mean slanted when I say Italic). Different
languages have different conventions of emphasising (e.g., Marathi uses bold font
for emphasis).

Miscellaneous: Anything other than these.

I am very much willing to support multilingual typesetting for multiple languages,
but I need to know the things mentioned in this list in order to provide the best suited
output. Please consider submitting a detailed feature request. The documentation of
supported languages is in separate PDFs. This documentation only describes the user-side
commands provided by the package.

{(list of languages)}

{(list of languages)}

This key works with the central key-parser of LineuisTiX, i.e., \linguistix. It accepts
one argument that is a list of languages user wants to load. Unlike babel, the first element
of this list is set as the main language for the document. The command \loadlanguages
has the identical behaviour. In fact, it is a wrapper around the key.

{(language options)} {(language name)}

This is a wrapper command over \babelprovide. The first argument is passed to the
optional argument of \babelprovide and the second one to the mandatory argument of
the same. For more information, please read babel’s manual.

Languages supported by LineuisCiX-Laneuaees are loaded with a package with that
language’s name. If it is absent, the package produces a warning.

= {(strict/logical/off)}

Many languages need native digits. Adding them in a multilingual document is quite
complicated. This key sets the plugs provided for the socket of the same name. Language
packages already take care of them, but if you want to change anything mid-document,
you can use this key. It has three choices available as its value as seen below.

The ‘strict’ plug changes the \1ngx_counter:n command to the counter of the main
language of the document. That way all the counters are printed in the main language.

13

tex.stackexchange.com/a/548668

logical

\lngxlogo

This plug changes the meaning of \1lngx_counter:n to the \localecounter command
provided by babel. It picks up the surrounding language and uses its native digits. E.g.,
when Marathi is being typeset, it will print counters in Marathi. When it is changed to
English, it will start printing the same in English. Note that this will reflect in table
of contents/tables/figures too. It is called logical numbering because it obeys TEX’s
logic more than what is generally considered the standard. E.g., imagine you have an
English section followed by a Marathi section on the same page. Both of them will follow
their own numerals for default TEX counters. Since both of them are on the same page,
while shipping out, the last active language will be used for processing the page number
(Marathi in this case). This creates a table of contents with Latin numeral as the section
counter, but Marathi numeral as the page number. Only experiments can determine if an
option like this can have valid use-cases, so it is provided. If you use it, be aware that the
results might not be the most pleasant to your aesthetic values. They are so because of

the logic of TEX.

It is equivalent of the noop plug when the other two are not used at all. It is only required
when you want to go back to BTEX defaults. E.g., if you have turned strict native
numbering in some language and you want it to go back to E*TEX defaults, you may use
this.

IT LINGUIS'CIX-LOGOS AMTEX 3-interface | Implementation

This is a small package that provides commands for printing logos of the LineuisCiX
bundle. The logo is printed in New Computer Modern Uncial font. It uses purple colour
for the ‘X’ in it and it is defined using I3color module. It provides one command that
takes an optional argument. Obviously it is ‘protected’. It is as follows:

[(package name)]

The logo of the (package name) from the LineuisCiX bundle is printed with this command,
e.g., \1ngxlogo [fonts] — LineuisCiX-Foncs.

Sometimes, the logos might be required to be used in an expandable way, but
optional arguments are not supported in expandable commands. Thus we create separate
commands for separate packages. Even these ones have the 1ngx prefix. It is followed
by the package name, e.g., fonts or ipa and finally the suffix logo. In the context of
hyperref, their behaviour is different than in the context of normal text.

I2 LINGUISCIX-NFSS IMTEX 3-interface | Implementation

This is an extension package to the existing NFSS scheme of I*TEX. The NFSS mainly
works on the four facets of the text.

1. Encoding
2. Family

3. Shape

14

4. Series

These facets are reset to default by the \normalfont and \selectfont commands.
These commands work on some internals that are reset with every usage of some commands
that set them, e.g., \rmfamily, \bfseries. There isn’t any way to control this unless
some internals are touched and there might be incidences where one does want to control
them, e.g., try compiling the following code in Lual&TEX.

\documentclass{article}

\begin{document}

\makeatletter
\fontencoding{0T1}\sffamily\itshape\bfseries
\selectfont

\f@encoding\ | \f@family\ | \f@series\ | \f@shape\quad
\normalfont

\f@encoding\ | \f@family\ | \f@series\ | \f@shape
\end{document}

As can be seen in the output, the first line shows the text in OTI encoding, sans family,
bold series and Italic shape. After \normalfont, every aspect of the text is reset to the
default one. The default encoding is TU. We can see TU instead of OTI after \normalfont.
So is the case with family (default: \rmfamily), series (default: \mdseries) and shape
(default: \upshape). This usually is okay, but sometimes it doesn’t fit the requirement.
E.g., the following might be used with the intention of switching from the 1PA font to the
text font, but as can be seen, it doesn’t really change anything.

\documentclass{article}
\usepackage{linguistix-fonts}
\usepackage{linguistix-ipa}
\linguistix{¥%

text upright

text upright features

ipa upright

ipa upright features

}

{KpRoman-Regular.otf},%
{Color={greenl}},%
{KpSans-Regular.otf},7
{Color={red}}’

\begin{document}
test \lngxipa test \normalfont test
\end{document}

The reason for this is the way \1ngxipa is defined. It resets \rmdefault, \sfdefault
and \ttdefault and uses \normalfont to initialise this new super font family (see:
https://tex.stackexchange.com/a/729805). Setting a ‘super’ font family effectively
changes the behaviour of \normalfont permanently. By the way, this is not just something
that LineursTiX has to deal with. This situation may arise whenever one wants to have

I5

https://tex.stackexchange.com/a/729805

\IfEncodingTF
\IfEncodingT
\IfEncodingF
\CurrentEncoding

\IfMetaFamilyTF
\IfMetaFamilyT
\IfMetaFamilyF
\CurrentMetaFamily

L D I

\IfSuperFamilyTF
\IfSuperFamilyT
\IfSuperFamilyF
\CurrentSuperFamily

L I

\IfSeriesTF
\IfSeriesT
\IfSeriesF
\CurrentSeries

L S

\IfShapeTF
\IfShapeT
\IfShapeF
\CurrentShape

a font family command that sets all serif, sans serif and monospaced font families.
LineursCiX-nFss is useful in such cases. It introduces the concept of ‘super’ font family. It
shouldn’t be confused with I TEX 2.’s ‘meta’ font family. It refers to rm, sf or tt in the
kernel. This package provides control over these facets. Let’s have a look at the macros it
provides.

{(encoding)} {(true code)} {(false code)}
{({encoding)} {(true code)}
{({encoding)} {(false code)}

If the current encoding matches with the given (encoding), it selects the true branch;
false otherwise. The \CurrentEncoding macro expands to the current encoding.

{(meta family)} {(true code)} {(false code)}
{(meta family)} {(true code)}
{(meta family)} {(false code)}

If the current meta family matches with the given (meta family), it selects the true
branch; false otherwise. The \CurrentMetaFamily macro expands to the current meta
family.

{(super family)} {(true code)} {(false code)}

{(super family)} {(true code)}

{(super family)} {(false code)}

If the current super family matches with the given (super family), it selects the true
branch; false otherwise. The \CurrentSuperFamily macro expands to the current super
family.

{(series)} {(true code)} {(false code)}
{(series)} {(true code)}
{(series)} {(false code)}

If the current series matches with the given (series), it selects the true branch and false
otherwise. The \CurrentSeries macro expands to the current series.

{(shape)} {(true code)} {(false code)}

{(shape)} {(true code)}

{(shape)} {(false code)}

If the current series matches with the given (shape), it selects the true branch and false
otherwise. The \CurrentShape macro expands to the current shape.

\superfontfamily {(family 1D)} {(rm={(rm NFss)},sf={(sf NFss)},tt={(tt NFss)})}

Every super font family has a (family 1D), even the default one (i.e., default). This
command creates a super family with the given (family 1D)s. The (meta family keys)
argument accepts a list of specific keys, rm, sf and tt. They take the NFSS family names
of these meta families as arguments. One may define a font with, say, \newfontfamily,
pass the NFSSkeys={(key)} option to it and use the (key) in the suitable (meta family
key). Note that using all these keys is not mandatory. A super family may have < 3 keys.

16

\softsuperfontfamily
\softersuperfontfamily

{(1D)}{(encoding, family, series, shape)}
{{1D)}

\softestsuperfontfamily {(1p)}

\softnormalfont
\softernormalfont
\softestnormalfont

These commands loads the super font family with the given (1p). The attributes listed in
the second argument are the only choices available. The required super font family is loaded
and the listed attributes are reset to the ones that were active before. All the four are not
required. The number of attributes may be < 4. The \softernormalfont command ex-
cludes encoding and reactivates all the other attributes, whereas the \softestnormalfont
command reactivates all of them.

{(encoding, family, series, shape)}

Similar to \softsuperfontfamily and friends, these commands switch back to the default
super font family, but reactivate the previously active font attributes. The argument to
\softnormalfont takes the list of the required font attributes. It can have < 4 values.
Now try the following example:

\documentclass{article}
\usepackage{linguistix}
\linguistix{%
text upright features = {Color={greenl}},%
ipa upright features {Color={red}}%
}

\begin{document}

test \lngxipa test \softernormalfont test\par
\makeatletter

\sffamily\itshape\bfseries

\f@family\ | \f@series\ | \f@shape\quad
\softnormalfont{series}

\f@family\ | \f@series\ | \f@shape
\end{document}

Better? :-)

IMTEX 3 interface for programmers

In this section, we take a look at the public NTEX3 commands of the bundle. These can
be considered stable and can be used in production code.

LINGUIS’CIX-BASE Documentation | Implementation

\lngx_set_keys:n (keyval list)

This is the base command for \linguistix. It takes a comma separated list of (keyval
list) and parses it.

I7

LineuisCiX- FIXPEX Documentation | Implementation

No I*TEX3 function provided by this package.

LineuisCiX-FonNcs Documentation | Implementation

\g_lngx_old_style_bool

These are the two booleans that are used to check if the old style numbers, the old style

\g_lngx_old_style_one_bool gpe (i.e., ‘1) and Bourbaki’s emtpy set symbol (i.e., ‘@) is asked by the user.

\g_lngx_bourbaki_bool

\lngx_set_main_font:nn {(features)} {()’
\lngx_set_main_font:VV {(features)} {({font)}
()3 (font)}

\1ngx_set_sans_font:nn {(features

\lngx_set_sans_font:VV {(features)} {(font)}

\1lngx_set_mono_font:
\1lngx_set_mono_font:VV
\1lngx_set_math_font:nn
\lngx_set_math_font:VV

™ These commands take two arguments, retrieve the values of the data variables if :VV
variants are used. These are wrapper commands around the font-setting commands
of fontspec and unicode-math, i.e., \setmainfont, \setsansfont, \setmonofont and

\setmathfont. The (features) are passed to the optional argument and the (font) is
passed to the mandatory argument of the respective command from the aforementioned
list.

\1lngx_other_main_font:
\1lngx_other_main_font:
:nnn {(language)} {(features)} {(font)}
\1lngx_other_sans_font:
\1ngx_other_mono_font:
\1lngx_other_mono_font:

\1lngx_other_sans_font

nnn {(language)} {(features)} {(font)}
nee {(language)} {(features)} {(font)}

nee
nnn
nee

These commands take three arguments. These are wrapper commands around the font-
setting commands of babel. The (features) are passed to the optional argument and

the (font) is passed to the mandatory argument of the respective command from the
aforementioned list.

LINGUIS’CIX- cLossine Documentation | Implementation

\1lngx_gloss_format:n

{(gloss)}

\1ngx_expansion_format:n {({ezpansion)}

This function is controlled by the key format. Its argument is the gloss or the expansion
itself. According to the definition set in the key, the argument gets printed.

\lngx_gloss_new:nn {(gloss)} {(ezpansion)}

This function creates a new gloss. It is later equated with the \newgloss command.

\lngx_gloss_list: This functions prints the list of glosses and is equated with \1istofglosses.

lngx_multicols {(section title)}

This environment reads an integer variable, i.e., \1__lngx_glossary_columns_int. It
is controlled by the columns key. If its number is more than one (which, by default is
more than one), the multicols environment is used around the content that comes in
between, or else no action is taken. It takes one compulsory argument, i.e., the content of
the section title material. This environment should not be used outside this package.

18

LINGUIS'CIX-I];)A Documentation | Implementation

This package provides a few wrapper functions around fontspec’s commands.

\lngx_set_main_ipa_font:nn {(features)} {(font)}

\1lngx_set_main_ipa_font
\lngx_main_ipa:
Ingx_ipa_rm_nfss

VvV

These functions set the IPA fonts for the serif variants. The (font) is set with (features)
for the serif 1PA. The command to switch to this family is \1ngx_main_ipa:. It can be
accessed with the NFSS family 1ngx_ipa_rm_nfss.

\lngx_set_sans_ipa_font:nn {(features)} {({font)}

\1lngx_set_sans_ipa_font:
\1lngx_sans_ipa:
Ingx_ipa_sf_nfss

Vv

These functions set the 1PA fonts for the sans variants. The (font) is set with (features)
for the sans 1PA. The command to switch to this family is \1ngx_sans_ipa:. It can be
accessed with the NFss family 1ngx_ipa_sf_nfss.

\lngx_set_mono_ipa_font:nn {(features)} {(font)}

\1lngx_set_mono_ipa_font:
\1lngx_mono_ipa:
Ingx_ipa_tt_nfss

Vv

These functions set the 1PA fonts for the mono variants. The (font) is set with (features)
for the mono 1PA. The command to switch to this family is \1ngx_mono_ipa:. It can be
accessed with the NFss family Ingx_ipa_nfss_nfss.

\lngx_ipa: The \1lngx_ipa: command loads the super family lngx_ipa (see the documentation of

Ingx_ipa

LiveursCiX-nrss). The \1ngx_ipa: function has a user-side command \1lngxipa too.

LINGU_IS'CIX- LaNeuaces Documentation | Implementation

Here are the L3 functions defined for LincuisCiX-Laneuaces.

\g_lngx_main_language_tl A t1 that globally stores the main language of the document.

\g_lngx_languages_clist A clist that globally stores the languages that are used.

\1lngx_languages:nn {(language options)} {(language name)}
\lngx_languages:VV (language options tl) (language tl)

These functions read the V-type argument provided to them and pass it to the
\babelprovide command for loading languages.

\lngx_load_languages:n {(list of languages)}

This function loads the languages in LineuisCiX sense.

\1lngx_counter:n This is a developers function provided for printing the counter based on the plug selected.

It changes the meaning according to the active value of native-numbering socket.

\lngx_misc_reset: This function resets a lot of custom settings done by some languages. It has to be used

inside \addto macro provided by the babel package.

19

\1lngx_logo_font:

Ingx_purple_color

LINGUIS'CIX-LOGOS Documentation | Implementation

There are only two EXTEX3 functions provided by this package.

This function switches to the New Computer Modern Uncial font family.

I don’t like the default purple colour of the xcolor package (i.e., [l])- Thus I have created
a new colour using I3color module. It can be accessed using this variable. The color looks

like:

LINGUIS’CIX—NFSS Documentation | Implementation

This subsection discusses the programming interface LineuisCiX-~fss provides.

\c_lngx_default_rmdefault_tl * These tls expand to the default values of the fonts set at the begindocument/end

\c_lngx_default_sfdefault_tl * hook. These are not supposed to be changed and hence they are set with the c prefix.
\c_lngx_default_ttdefault_tl x

\1_lngx_current_encoding_tl
\1_lngx_current_meta_family

x These tls expand to the current values of encoding, meta family, super family,

_tl x series and shape respectively. Note that these are updated time to time by the

\1_lngx_current_super_family_tl * commands that change them (package-internal or NTEX-internal).

\1_lngx_current_series_tl *

\1_lngx_current_shape_tl *

\lngx_if_encoding_p:n * {{encoding)}

\lngx_if_encoding:nTF * {{encoding)}{(true code)}{(false code)}

\lngx_if_meta_family_p:n «* {(meta font family)}
\lngx_if_meta_family:nTF *{(meta font family)}{(true code)}{(false code)}

\lngx_if_super_family_p:n
\1lngx_if_super_family:nTF *
\1lngx_if_series_p:n
\lngx_if_series:nTF

* {(super font family)}

<supe'r font family)}{(true code)}{(false code)}
(

(

semes)}{(t’rue code)}{(false code)}

\lngx_if_shape_p:n * {(shape)}

\lngx_if_shape:nTF * {(sha,pe)}{(t'r‘ue code)}{(false code)}
\lngx_if meta_family_rm_p: =

\lngx_if_meta_family_rm:TF * {(true code)}{(false code)}
\lngx_if _meta_family_sf_p: *

\lngx_if _meta_family_sf:TF * {(true code)}{(false code)}
\lngx_if_meta_family_tt_p: *

\lngx_if _meta_family_tt:TF

* {(true code)}{(false code)}

These conditionals select the true branch if the rm, sf, tt families (respectively) are active,
false otherwise.

20

\lngx_if_series_md_p: *
\lngx_if_series_md:TF % {(true code)}{(false code)}
\1lngx_if_series_bf_p: *
\lngx_if_series_bf:TF % {(true code)}{(false code)}

These conditionals select the true branch if the md, bf series (respectively) are active,
false otherwise.

\lngx_if_shape_up_p: «*
\lngx_if_shape_up:TF x {(true code)}{(false code)}
\lngx_if_shape_it_p: =
\lngx_if_shape_it:TF * {(true code)}{(false code)}
\1lngx_if_shape_sc_p: =«
\lngx_if_shape_sc:TF % {{true code)}{(false code)}
\1lngx_if_shape_ssc_p: *
\1ngx_if_shape_ssc:TF x {(true code)}{(false code)}
\lngx_if_shape_sl_p: «*
\lngx_if_shape_sl:TF * {(true code)}{(false code)}
\1lngx_if_shape_sw_p: «*
\lngx_if_shape_sw:TF % {{true code)}{(false code)}
\1lngx_if_shape_ulc_p: x*
\1ngx_if_shape_ulc:TF {(true code)}{(false code)}

These conditionals select the true branch if the up, it, sc, ssc, sl, sw, ulc shapes
(respectively) are active, false otherwise.

\1lngx_super_font_family:nn {(family 1D)} {(rm={(rm NFss)},sf={(sf NFss)}, tt={(tt nFss)})}

This function takes an (1p) and sets the rm, sf, tt values as requested by the user and
creates a super font family.

\lngx_soft_super_font_family:nn {(1D)}{(encoding, family, series,shape)}
\lngx_softer_super_font_family:n {(1D)}
\lngx_softest_super_font_family:n {(1D)}

The \1lngx_soft_super_font_family:nn sets super family marked by the (1p) and
reactivates the currently active font attributes listed in the second argument. The other
two do the same, but without the list. the softer one omits the encoding and the
softest one reactivate all of them.

\lngx_soft_normal_font:n {(1D)}
\1lngx_softer_normal_font:

\Ingx_softest_mormal font: Quite similar to the soft super family functions, these ones set the default font family and

reactivate the font attributes. The soft one sets the attributes listed in the argument.
The softer one omits encoding and reactivates the rest and the softest one reactivates
all.

21

Implementation

In this section the code of this bundle is documented. Each package in the bundle is
documented in a separate subsection.

LineuisCiX

Provide the package with its basic information.

I

(xpackage)

\ProvidesExplPackage{linguistix}

{2026-01-19}

{v0.7}

Tk
The ‘LinguisTiX’ bundle: Enhanced
support for linguistics.%

}

When one loads LineuisCiX, all the packages of the bundle are loaded automatically.
That’s the only content of the umbrella package LineuisCiX. All the packages are loaded
conditionally (i.e., only if not loaded already).

34

\IfPackageLoadedF
\RequirePackage

3}

\IfPackageLoadedF

\RequirePackage
}
\IfPackageLoadedF

\RequirePackage
}
\IfPackageLoadedF

\RequirePackage
}

- \IfPackageLoadedF

\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
\IfPackageLoadedF
\RequirePackage
}
(/package)

{

linguistix-base } {
linguistix-base }

linguistix-fonts } {
linguistix-fonts }

linguistix-glossing } {
linguistix-glossing }

linguistix-ipa } {
linguistix-ipa }

linguistix-languages } {
linguistix-languages }

linguistix-leipzig } {
linguistix-leipzig }

linguistix-logos } {
linguistix-logos }

linguistix-nfss } {
linguistix-nfss }

22

\1lngx_set_keys:n

\linguistix

LineuisCiX-Base Documentation | IAMTEX 3-interface

Set the essentials of the package.

35 (*base)

56 \ProvidesExplPackage{linguistix-base}

37 {2026-01-19}

38 {v0.7}

39 Tk

40 The base package of the ‘LinguisTiX’
P bundle.’

42 }

I use the I3keys module of E'Tj5X g for creating the key-values used in this bundle. In order
to get a singleton parser for all the packages of the bundle, I have create this parsing
command that is used throughout the bundle.

43
s \cs_new_protected:Npn \lngx_set_keys:n #1 {
s \keys_set:nn { Ilngx_keys } { #1 }

46 }

(End of definition for \lngz_set_keys:n. This function is documented on page 17.)

I equate this command with a user-side macro here and end the LineuisCiX-gase package.

47
s \cs_gset_eq:NN \linguistix \lngx_set_keys:n
50 (/base)

(End of definition for \linguistiz. This function is documented on page 5.)

23

LINGUIS'CIX-FIXPEX Documentation | IAMTEX 3-interface

The unicode-math defines \gla which clashes with the same command defined by the
expex package. Of course, the expex-\gla is more relevant in linguistics. Thus I will save
that and provide a new command for the unicode-math-\gla. This is not relevant to
people who are not using expex. Thus, the settings are loaded only conditionally.

so (xfixpex)

s: \ProvidesExplPackage{linguistix-fixpex}

{2026-01-19}

53 {VO . 7}

54 v

55 The base package of the ‘LinguisTiX’
56 bundle.’

57 }

This package is useful only if either expex or unicode-math is loaded. Otherwise, it is of
no use. Thus, I create a message when either of them is not loaded.

58
so \msg_new:nnn { fixpex } { pkg_not_loaded } {

6o The~ ‘LinguisTiX-fixpex’~ package~ is~ a~ first-aid-~

ez for~ resolving~ the~ conflict~ between~ ‘unicode-math’~

6= and\\ ‘expex’.~ It~ should~ only~ be~ used~ if~ at~ least~
63 one~ of~ the\\ two~ is~ loaded.~ Here~

64 ‘LinguisTiX-fixpex’~ can~\\ be~ omitted~ since~ you~ are~
65 not~ using~ ‘#1°.
66

I first start the hook begindocument/before.

67

6s \hook_gput_code:nnn { begindocument / before } { . } {

The unicode-math package defines \gla after \begin{document}, so the fix needs to be
added after that is done. For that, I start the begindocument/end hook.

6o \IfPackageLoadedTF { expex } {
70 \IfPackageLoadedTF { unicode-math } {
7 \hook_gput_code:nnn { begindocument / end } { . } {

\umgla This replicates the unicode-math-\gla for future use.
72 \cs_gset_eq:NN \umgla \gla
(End of definition for \umgla. This function is documented on page 5.)

The expex-\gla is then equated to the internal function of the package that does the
actual function (Munn and Gregorio 2023).

73 \cs_gset_eq:NN \gla \glw@gla

2 }
In the false branch of unicode-math, I issue an info message that is not visible on the
terminal, but is printed in the log file.

75 P A

76 \msg_info:nnn { fixpex } { pkg_not_loaded } {
77 unicode-math

78 }

79 ¥

24

Similarly, I do it for expex.

80 } {

81 \msg_info:nnn { fixpex } { pkg_not_loaded } {
82 expex

83 }

84 }

85 }

86 (/fixpex)

25

LineuisCTiX- FONTS Documentation | IAMTEX 3-interface

Package essentials first.

s7 (xfont)

ss \ProvidesExplPackage{linguistix-fonts}

89 {2026-01-19}

g0 {v0.7%}

o1 Tk

02 The font-assistant package of the
93 ‘LinguisTiX’ bundle.

94 }

I load LineuisCiX-ase and unicode-math (if they are not already loaded).

o6 \IfPackageLoadedF { linguistix-base } {
07 \RequirePackage { linguistix-base }

98}

o \IfPackageLoadedF { unicode-math } {

o \RequirePackage { unicode-math }

w02 }

103

s \IfPackageLoadedF { linguistix-fixpex } {
105 \RequirePackage { linguistix-fixpex }

106 }

\LaTeX We save the original code for the \LaTeX logo and then renew the command.
\ogLaTeX .
08 \NewCommandCopy \ogLaTeX \LaTeX
109
o \RenewDocumentCommand \LaTeX { 1} {J
=: L\kern-.8lex\relax
x> \raisebox{.6ex}{\textsc{a}}\kern-.23ex\relax
13 \hbox{T}\kern-.4ex\relax
zs \raisebox{-.5ex}{E}\kern-.3ex\relax
s Xh
u6 }

(End of definition for \LaTeX and \ogLaTeX. These functions are documented on page 5.)

old style numbers I use the .bool_gset:N key-type of I3keys for developing these boolean keys.
\g_lngx_old_style_bool .

old style one .5 \keys_define:nn { lngx_keys } {
\g_lngx_old_style_one_bool 119 old~ style~ numbers

bourbaki's empty set =0 .bool_gset:N ={
\g_lngx_bourbaki_bool ==) \g_lngx_old_style_bool
123 old~ style~ one
=y .bool_gset:N =4
125 \g_lngx_old_style_one_bool
=6},
127 bourbaki's~ empty~ set
128 .bool_gset:N ={
129 \g_lngx_bourbaki_bool
30}

26

\g__lngx_text_main_fonts_prop
\g__lngx_text_main_font_features_tl
text upright

text upright features

text bold upright

text bold upright features
text italic

text italic features

text bold italic

text bold italic features
text slanted

text slanted features

text bold slanted

text bold slanted features
text swash

text swash features

text bold swash

text bold swash features
text small caps

text small caps features

o}

(End of definition for old style numbers and others. These functions are documented on page 6.)

In the first few versions of the package, I used to save the font-names and their features
in token lists, but I found a better way to deal with this later which was using prop lists.
I had released the tls publicly (with a single _ after the scope marker), which means
ideally they should be available forever, but for performance and maintenance the newer
approach is much preferred and hence I decided to shift to prop lists from vo.6. This
time, I am correcting the mistake I made before. The prop lists that save the keys is
not public. It need not be. Only the key-value pairs are public. They are unchanged
anyway. This section describes the implementation of serif text fonts. All these keys
have a common pattern of code. For the convenience of maintenance, I have created a
comma-separated-list and used the elements of this list inside the common code. (See:
https://topanswers.xyz/tex?q=8074#a7689.)

132

133 \prop_gclear_new:N \g__lngx_text_main_fonts_prop

34 \tl_gclear_new:N \g__lngx_text_main_font_features_tl

135

136 \clist_map_inline:nn {

137 upright,

38 bold~ upright,

139 italic,

140 bold~ italic,

141 slanted,

142 bold~ slanted,

143 swash,

144 bold~ swash,

145 small~ caps

ue ¥ {
All the keys here are prefixed with the word text in order to distinguish them from the
keys provided by the LineuisCiX-ipa package. The argument of these keys should be
expanded for which I use \prop_gput:Nne function. Each #1 is replaced by the items
from clist and the loop is repeated, whereas ##1 is the argument passed to the key by
user.

17 \keys_define:nn { lngx_keys } {

148 text~ #1

140 .code:n = {

I start a group first. Then clear and set a temporary string variable. I make the text of
the key titlecased as required by fontspec and remove the spaces. Lastly, the word Font
is appended. So, bold italic becomes BoldItalicFont.

150 \group_begin:
151 \str_clear:N \1l_tmpa_str
152 \str_set:Ne \1_tmpa_str {
153 \text_titlecase_all:n { #1 }
154 Font
155 }
156 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
The string is used inside the relevant prop-key and group is ended.
157 \prop_gput:Nne \g__lngx_text_main_fonts_prop
158 { text~ #1 }

27

https://topanswers.xyz/tex?q=8074#a7689

150 { \str_use:N \1_tmpa_str = { ##1 } }

160 \group_end:

161 } >
Same is repeated for features.

162 text~ #1~ features

163 .code:n = {

164 \group_begin:

165 \str_clear:N \1_tmpa_str

166 \str_set:Ne \1_tmpa_str {

167 \text_titlecase_all:n { #1 }

168 Features

169 }

170 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
71 \prop_gput:Nne \g__lngx_text_main_fonts_prop
72 { text~ #1~ features }

73 {

174 \str_use:N \1_tmpa_str = { ##1 }
75 }

176 \group_end:

7 }

SR

79 }

(End of definition for \g__lngz_text_main_fonts_prop and others. These functions are documented on page
10.)

text extra features This key adds to the property that stores the extra features for the serif fonts.

s: \keys_define:nn { lngx_keys } {

182 text~ extra~ features

183 .prop_gput:N = \g__lngx_text_main_fonts_prop
184 }

(End of definition for text exztra features. This function is documented on page 12.)

28

\g__lngx_text_sans_fonts prop Since the only difference between the upcoming keys is that of the word sans and mono,
\g__lngx_text_sans_font_features_t1 we combine them together and use a nested clist. The rest of the mechanism is identical.
\g__lngx_text _mono_fonts_prop
\g__lngx_text mono_font_features t1 5 \prop_gclear_new:N \g__lngx_text_sans_fonts_prop
text sans upright 57 \tl_gclear_new:N \g__lngx_text_sans_font_features_tl
text sans upright features 188
text sans bold upright \prop_gclear_new:N \g__lngx_text_mono_fonts_prop
text sams bold upright features *o° \tl_gclear_new:N \g__lngx_text_mono_font_features_tl
text sans italic

. . 192 1i m. inline:nn
text sans italic features 9 \clist_map_ e {

text sans bold italic :2§:’
text sans bold italic features Iz: } 1
text sans slanted \clist_map_inline:nn {
text sans slanted features 107 upright,
text sans bold slanted 108 bold~ upright,
text sans bold slanted features 100 italic,
text sans swash =00 bold~ italic,
text sans swash features 201 slanted,
text sans bold swash > bold~ slanted,
text sans bold swash features **° swash,
text sans small caps bold~ swash,
205 small~ caps
text sans small caps features o F 1
text mono upright 207 \keys_define:nn { lngx_keys } {
text mono upright features text~ #1~ ##1
text mono bold upright .code:n ={
text mono bold upright features .. \group_begin:
text mono italic 211 \str_clear:N \1_tmpa_str
text mono italic features == \str_set:Ne \1_tmpa_str {
text mono bold italic 213 \text_titlecase_all:n { ##1 }
text mono bold italic features =™ Font
text mono slanted °*° ¥
text momo slanted features 216 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
text mono bold slanted :Z \PEOP.gput: e i E;;i?gzifezil :1 -fonte-prop J
text mono bold slanted features o { ##e81 }
text mono swash \group_end:
text mono swash features or 3},
text mono bold swash ... text~ #1~ ##1~ features
text mono bold swash features -3 .code:n =Aq
text mono small caps 224 \group_begin:
text mono small caps features == \str_clear:N \1_tmpa_str
226 \str_set:Ne \1_tmpa_str {
227 \text_titlecase_all:n { #1 }
228 Features
229 }
230 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
231 \prop_gput:cne { g__lngx_text_ #1 _fonts_prop }
232 { text~ #1~ ##1~ features }
233 {
234 \str_use:N \1_tmpa_str = { ####1 }
235 }
236 \group_end:

29

\keys_define:nn { lngx_keys } {
text~ #1~ extra~ features

.prop_gput:c

= {
g__lngx_text_ #1 _fonts_prop
}

(End of definition for \g__lngz_tezt_sans_fonts_prop and others. These functions are documented on page

I1.)

\g__lngx_text_main_font_tl These keys add the parameter that sets the main font for text. They set an internal token
\g__lngx_text_sans_font_tl list which is retrieved later by font setting command.

\g__lngx_text_mono_font_tl
text main font 248
text sans font 249
text mono font 250

\clist_map_inline:nn {

}

}

main,
sans,
mono

{

\keys_define:nn { Ilngx_keys } {

text~ #1~ font

.tl_gset:c
}

= { g__lngx_text_ #1 _font_tl }

(End of definition for \g__lngz_tezt_main_font_tl and others. These functions are documented on page I0.)

\g__lngx_math_fonts_prop The following are the keys set for math. They use the same mechanism as before.

\g__lngx_math_features_tl
\g__lngx_math_bold_fonts_prop .
\g__lngx_math_bold_features t1 260

math 261
math features L
math bold *%

math bold features ™
265

267

\prop_gclear_new:N \g__lngx_math_fonts_prop
\tl_gclear_new:N \g__lngx_math_features_tl

\prop_gclear_new:N \g__lngx_math_bold_fonts_prop
\tl_gclear_new:N \g__lngx_math_bold_features_tl

\keys_define:nn { lngx_keys } {

}

math

.tl_gset:N

math~ bold
.tl_gset:N

math~ features
.prop_gput:N

math~ bold~ features

.prop_gput:N

\g__lngx_math_font_t1,

\g__lngx_math_bold_font_tl,
\g__lngx_math_fonts_prop,

\g__lngx_math_bold_fonts_prop

(End of definition for \g__ingz_math_fonts_prop and others. These functions are documented on page 6.)

newcm This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families.

275

276 \keys_define:nn { lngx_keys } {

30

277 newcm

278 .meta:n = {

270 text~ main~ font = { NewCM10-Book.otf },

280 text~ sans~ font = { NewCMSans10-Book.otf 7},
281 text~ mono~ font = { NewCMMono10-Book.otf },
282 math = { NewCMMath-Book.otf },
283 math~ bold = { NewCMMath-Bold.otf }
284 }

285 }

(End of definition for newem. This function is documented on page 6.)

newcm sans Thisis a .meta:n key that sets the default fonts to the sans family.
286
-5, \keys_define:nn { lngx_keys } {
288 newcm~ sans

289 .meta:n = {

290 main~ font = { NewCMSans10-Book.otf },

201 sans~ font = { NewCMSans10-Book.otf },

292 mono~ font = { NewCMMono10-Book.otf },

203 math = { NewCMSansMath-Regular.otf 7},
294 math~ bold = { NewCMSansMath-Regular.otf }
295 }

206

(End of definition for newem sans. This function is documented on page 6.)

newcm mono This is a .meta:n key that sets the default fonts to the monospaced family.

297
208 \keys_define:nn { lngx_keys } {
209 Newcm~ Mono

300 .meta:n ={

301 main~ font = { NewCMMono10-Book.otf },

302 sans~ font = { NewCMSans10-Book.otf },

303 mono~ font = { NewCMMono10-Book.otf },

304 math = { NewCMSansMath-Regular.otf },
305 math~ bold = { NewCMSansMath-Regular.otf }
306 }

307 }

(End of definition for newem mono. This function is documented on page 6.)

newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.

308
;00 \keys_define:nn { lngx_keys } {
310 newcm~ regular

- .meta:n ={

312 main~ font
313 sans~ font

{ NewCM10-Regular.otf },
{ NewCMSans10-Regular.otf },

314 mono~ font = { NewCMMono10O-Regular.otf },
315 math = { NewCMMath-Regular.otf },
316 math~ bold = { NewCMMath-Bold.otf }
37}

318 }

3I

newcm regular sans

newcm regular mono

\1lngx_set_main_font:
\1lngx_set_sans_font:
\1lngx_set_mono_font:
\1lngx_set_math_font:

nn
nn
nn
nn

(End of definition for newem regular. This function is documented on page 6.)

This is a .meta:n key that sets the default fonts to the regular sans variant of the New
Computer Modern family.

319

;20 \keys_define:nn { lngx_keys } {

321 newcm~ regular~ sans

;22 .meta:n =

323 main~ font = { NewCMSans10-Regular.otf },
324 sans~ font = { NewCMSans10-Regular.otf },
325 mono~ font = { NewCMMonol10O-Regular.otf },
326 math = { NewCMMath-Regular.otf },
327 math~ bold = { NewCMMath-Bold.otf }

328 }

329 }

(End of definition for newem regular sans. This function is documented on page 6.)

This is a .meta:n key that sets the default fonts to the regular monospaced variant of
the New Computer Modern family.

330

s3r \keys_define:nn { 1lngx_keys } {

332 newcm-~ regular~ mono

333 .meta:n =4

334 main~ font = { NewCMMonolO-Regular.otf },
335 sans~ font = { NewCMSans10-Regular.otf },
336 mono~ font = { NewCMMonol0O-Regular.otf },
337 math = { NewCMMath-Regular.otf 1},
338 math~ bold = { NewCMMath-Bold.otf },

339 }

340 F

(End of definition for newem regular momno. This function is documented on page 6.)
Then we load the bourbaki's empty set boolean. This gets read later while setting
the math font.
341
22 \1lngx_set_keys:n {
343 bourbaki's~ empty~ set,

Then we load the old style numbers boolean.

324 0ld~ style~ numbers,
345 newcm

346 }

If LineursCiX-Laneuaces package is loaded, I load the fonts with \babelfont command.
In case it is not loaded, the fonts are set with \setxxxxcommand-type commands provided
by fontspec.

347

;8 \IfPackageLoadedF { linguistix-languages } {

3.0 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {

350 \setmainfont [#1] { #2 }

351 }

552 \cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
353 \setsansfont [#1] { #2 }

32

__lngx_build_main_font_features:
__Ingx_build_sans_font_features:
__Ingx_build_mono_font_features:
__lngx_build_math_font_features:
__Ingx_build_bold_math_font_features:
\g__lngx_text_main_font_features_tl
\g__lngx_text_sans_font_features_tl
\g__lngx_text_mono_font_features_tl
\g__lngx_math_font_features_tl
\g__lngx_bold_math_font_features_tl

354 }

355 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
356 \setmonofont [#1] { #2 }

357 }

358 }

A wrapper command is provided for loading math fonts.

359

;60 \cs_new_protected:Npn \lngx_set_math_font:nn #1#2 {

s6: \setmathfont [#1] { #2 }

362 }

363

;62 \cs_new_protected:Npn \lngx_set_math_bold_font:nn #1#2 {
565 \setmathfont [

366 #1,

367 version = { bold }
ses 1 { #2 1}

369 }

All of these commands should expand their arguments, so I provide the appropriate
variants.

370

s \cs_generate_variant:Nn \lngx_set_main_font:nn { VV }
;72 \cs_generate_variant:Nn \lngx_set_sans_font:nn { VV }
373 \cs_generate_variant:Nn \lngx_set_mono_font:nn { VV }
374 \cs_generate_variant:Nn \lngx_set_math_font:nn { VV }

575 \cs_generate_variant:Nn \lngx_set_math_bold_font:nn { VV }

(End of definition for \lngz_set_main_font:nn and others. These functions are documented on page 18.)

These are some internal functions that basically iterate on the prop list items and each of
them is put to the right of the respective token list. This way only the functions that are
added by the user are exported to the font setting command.

376

577 \clist_map_inline:nn {

378 malin,

379 sans,

380 mono

381 P {

;s= \cs_new_protected:cpn {

383 __lngx_build_ #1 _font_features:

384 } {

385 \prop_map_inline:cn { g__lngx_text_ #1 _fonts_prop } {
386 \tl_gput_right:cn {

387 g__lngx_text_ #1 _font_features_tl
388 T { ##u#2 }

389 }

390 }

391 }

303 \cs_new_protected:Npn __lngx_build_math_features: {
;04 \prop_map_inline:Nn \g__lngx_math_fonts_prop {

305 \tl_gput_right:Nn \g__lngx_math_features_tl {

396 { ##2 }

33

397 }

398 }

399 }

400

sor \cs_new_protected:Npn __lngx_build_math_bold_features: {
s> \prop_map_inline:Nn \g__lngx_math_bold_fonts_prop {

403 \tl_gput_right:Nn \g__lngx_math_bold_features_tl {
404 { ##2 }

405 }

406 }

207 }

(End of definition for __lngz_build_main_font_features: and others.)
Now I start the pre-begindocument hook.

408

200 \hook_gput_code:nnn { begindocument / before } { . } {

If the boolean for old style numbers is true, I set the Numbers key to 01dStyle. Similarly,
if the NewCM-specific old one is requested, I turn the character-variant on.

s \lngx_set_keys:n {

e text~ extra~

4o features = {

413 \bool_if:NT \g_lngx_old_style_bool {

414 Numbers = { 0ldStyle },

415 \bool_if:NT \g_lngx_old_style_one_bool {
416 CharacterVariant ={61}

417 }

418 }

419 },

420 text~ sans~ extra-~

4ot features = {

422 \bool_if:NT \g_lngx_old_style_bool {

423 Numbers = { 0ldStyle 1},

424 \bool_if:NT \g_lngx_old_style_one_bool {
425 CharacterVariant ={61}

426 }

427 }

428 }

429 }

All the font features are built using the internal functions and then fonts are set.

430 __lngx_build_main_font_features:

42 \lngx_set_main_font:VV
432 \g__lngx_text_main_font_features_tl
433 \g__lngx_text_main_font_tl

434 __lngx_build_sans_font_features:

435 \1lngx_set_sans_font:VV

436 \g__lngx_text_sans_font_features_tl

437 \g__lngx_text_sans_font_tl

438 __lngx_build_mono_font_features:

430 \lngx_set_mono_font:VV

440 \g__lngx_text_mono_font_features_tl

441 \g__lngx_text_mono_font_tl

442 __lngx_build_math_features:

43 \lngx_set_math_font:VV \g__lngx_math_features_tl

34

444 \g__lngx_math_font_tl

s __lngx_build_math_bold_features:

w6 \lngx_set_math_bold_font:VV \g__lngx_math_bold_features_tl
447 \g__lngx_math_bold_font_tl

448 }

10 (/font)

35

LineuisCiX-eLossiNG

(xglossing)

Documentation | IAMTEX 3-interface

\ProvidesExplPackage{linguistix-glossing}

{2026-01-19}
{v0.7}
v
Accessible glossing with LinguisTiX%

}

In order to print the multi-column glossary, I load the \multicol package.

457

.56 \IfPackageLoadedF { multicol } {
\RequirePackage { multicol }

459

460

}

I generate expansion-variants for kernel commands.

461

s62 \cs_generate_variant:Nn \seq_if_in:NnF { Ne }

Then I declare some variables that will be used for generating the glossing-auxiliary.

479

\bool_new:N

\tl_clear_new:
\tl_clear_new:
\tl_clear_new:
\dim_zero_new:
\dim_zero_new:
\dim_zero_new:
\dim_zero_new:

=Z=z==2=2=22=2

\int_gzero_new:
\str_clear_new:
\str_clear_new:
\str_clear_new:
\str_clear_new:
\str_clear_new:
\seq_gclear_new:N \g__lngx_gls_use_order_seq

Z=2=2=22=22=2

\1_lngx_expansion_bool
\1_lngx_gloss_separator_tl
\1_lngx_expansion_separator_tl
\1_lngx_glossary_separator_tl
\1_lngx_i_have_dim
\1_lngx_i_need_dim
\1_lngx_remain_dim
\1_lngx_i_hack_dim
\g__lngx_page_ref_int
\1_lngx_gls_language_str
\1__lngx_gls_sorting_order_str
\1__lngx_gls_expansion_case_str
\1__lngx_glossary_style_str
\1__lngx_separator_str

\str_set:Nn \1__lngx_separator_str { gloss }

Glossaries are hyperlinked with complex and cryptic labels. Some readers read the labels
loudly when using assistive technology. In order to dodge that, I add the text to the
Contents key. It uses Ulrike’s ideas: tex.stackexchange.com/a/758083/174620.

481

452 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
\socket_new_plug:nnn { hyp / link / GoTo / Contents }
{ text } {
\pdfstringdef __lngx_tmp_text: { #2 }
\pdfannot_dict_put:nne { link / GoTo } { Contents } {
(__lngx_tmp_text:)

483
484
485
486
487
488 }
489 }
400 }

After these initial declarations, I move to the socket that controls the description of the

gloss. The socket itself has no arguments.

491

36

tex.stackexchange.com/a/758083/174620

__lngx_gloss_description:

s> \socket_new:nn { lngx / description / gloss } { 0 }

When the socket is assigned the on plug, it defines the expandable internal command
for glossing description. It is then used inside the tagging socket. The same command
is made inactive when the socket is assigned the off plug. By default the off plug is
assigned (this is experimental and may change after reviews from the blind people). The
socket is activated by using it.

493

204 \socket_new_plug:nnn { 1lngx / description / gloss } { on } {

205 \cs_set:Npn __lngx_gloss_description: { Gloss~ }

496 }

497

w08 \socket_new_plug:nnn { lngx / description / gloss }

499 { off } {

soo \cs_set_eq:NN __lngx_gloss_description: \prg_do_nothing:

sor }

502

505 \socket_assign_plug:nn { lngx / description / gloss }

504 { off }

505

so06 \socket_use:n { Ilngx / description / gloss }

(End of definition for __lngz_gloss_description:.)
Then I declare the tagging socket for glossing which takes two arguments. It should
follow the default tagging which is why I use the default plug (which is the only
plug the package does and will offer). The code is based on suggestions by Ulrike
Fischer (github.com/latex3/tagging-project/discussions/975). The E tag is used
for ‘expansion’ which more or less suits the nature of glosses. So it is used here. The
command __lngx_gloss_description: is controlled by the socket and is expandable.
507

sos \NewTaggingSocket { lngx / gloss } { 2 }

509

5.0 \NewTaggingSocketPlug { 1lngx / gloss } { default } {

sz \mode_leave_vertical:

5= \tag_mc_end:

55 \exp_args:Ne

su \tag_struct_begin:n {

515 tag = { Span },
516 E = {

517 __lngx_gloss_description: #2

518 }

519 }

520 \tag_mc_begin:n {

sar tag = { Span }
522}

The argument is printed with the package-controlled formatting command. First I check
if the hyperref package is loaded. If it is loaded, the link colour is changed to the one
stored in the variable \g_lngx_gloss_link_color_str (black, by default).

523 \IfPackageLoadedTF { hyperref } {

524 \group_begin:

525 \str_clear:N \1_tmpa_str

526 \str_set:Nn \1_tmpa_str { #1 }
527 \exp_args:Ne \hypersetup {

37

github.com/latex3/tagging-project/discussions/975

528 linkcolor ={

520 \exp_not:V \g__lngx_gloss_link_color_str
530 }
531 }

The socket for adding text into the Contents directory is used here.
532 \socket_if_exist:nT { hyp / link / GoTo / Contents } {
533 \socket_assign_plug:nn {

534 hyp / link / GoTo / Contents
535 }

536 { text }

537 }

538 \1ngx_gloss_format:n {

530 \hyperlink { lngx_ #1 _glossary } { #1 }

540 ¥

541 \group_end:

see + o{

If hyperref is not loaded, the text is simply printed with the formatting command.
543 \1lngx_gloss_format:n { #1 }

544 }
545 \tag_mc_end:

56 \tag_struct_end:
57 \tag_mc_begin:n { }
548 }
I assign the default tagging plug to the socket I just defined.

549

sso \AssignTaggingSocketPlug { 1lngx / gloss } { default }

format Now I define the key for adjusting the formatting of the glosses. It controls several keys
contained in a separate set. In short, this key will take another keys as arguments.
551
552 \keys_define:nn { lngx_glossing } {
553 format
554 .meta:nn = { 1ngx / gloss / format } { #1 },

(End of definition for format. This function is documented on page 8.)

link color This option sets the colour used for glossing links. It is set to black by default.
\g__Ingx_gloss_link_color_str ... link~ color
556 .str_gset:N

557 link~ color

558 .initial:n

\g__lngx_gloss_link_color_str,

{ black },

(End of definition for link color and \g__lngz_gloss_link_color_str. This function is documented on
page 8.)

sort Glosses can be sorted alphabetically or as they are used. The choice key for that is as
\1__Ingx_gls_sorting order_str follows. By default glosses are sorted alphabetically.

550 sort

560 .choices:nn = { alphabetical, use } {
561 \str_set_eq:NN \1__lngx_gls_sorting_order_str
562 \1_keys_choice_str

563 },

s64 sort

565 .initial:n = { alphabetical },

38

expansion case
\1__Ingx_gls_expansion_case_str

style
\1__lngx_glossary_style_str

columns
\1__Ingx_glossary_columns_int

page numbers
\1__Ingx_glosses_page_number_bool

sectioning
\1__lngx_gls_sectioning_str

(End of definition for sort and \1__lngz_gls_sorting_order_str. This function is documented on page 8.)

The expansion can be printed in lower case, title case (with the first letter capitalised for
all the words) or title case (with the first letter capitalised only for the first word). The
default is lower case.

566 expansion~ case

567 .choices:nn =S

568 lowercase, title~ case~ all, title~ case~ first
569 } ‘[

570 \str_set_eq:NN \1__lngx_gls_expansion_case_str
571 \1_keys_choice_str

572 },

573 expansion~ case

574 .initial:n = { lowercase },

(End of definition for ezpansion case and \1__lngz_gls_ezpansion_case_str. This function is documented
on page 8.)

The glossary can be printed in two styles given below. The default is block.

575 style

576 .choices:nn = { block, inline } {
577 \str_set_eq:NN \1__lngx_glossary_style_str
578 \1_keys_choice_str

579 };

580 style

581 .initial:n = { block },

(End of definition for style and \1__lngz_glossary_style_str. This function is documented on page 8.)

There is an option to change the number of columns used for printing the glossary. It is
controlled here. Default is 2.

582 columns

s3 .int_set:N = \1__lngx_glossary_columns_int,
584 columns

585 .initial:n ={21},

(End of definition for columns and \l__lngz_glossary_columns_int. This function is documented on page
9)

Page numbers can be turned off with the following boolean. By default, they are active.
586 page~ numbers
587 .bool_set:N
588 page~ numbers
589 .initial:n

\1__1lngx_glosses_page_number_bool,

{ true },

(End of definition for page numbers and \1__lngz_glosses_page_number_bool. This function is documented
on page .

The section used for printing the glossary title is controlled by the following command.
By default, I use \section for printing the title.

500 sectioning

591 .str_set:N = \1__lngx_gls_sectioning_str,
50 sectioning
503 .initial:n = { section },

39

section number
\1__lngx_gls_section_number_bool

no bold
\1__lngx_gls_bold_bool

separator
\1__lngx_separator_tl

entry separator
\1__lngx_entry_separator_tl

(End of definition for sectioning and \1__lngz_gls_sectioning_str. This function is documented on page
9)

This controls if the sectioning level should be numbered or unnumbered. The default is
false.

594 section~ number
595 .bool_set:N

506 section~ number
507 .initial:n

\1__lngx_gls_section_number_bool,

{ false },

(End of definition for section number and \1__1lngz_gls_section_number_bool. This function is documented
on page .

The no bold key is defined as an inverse boolean. By default the key is set to false
(resulting in the controlled boolean being true).

508 no~ bold

599 .bool_set_inverse:N = \1__lngx_gls_bold_bool,
600 no~ bold
6ot .initial:n = { false },

(End of definition for no bold and \1__1lngz_gls_bold_bool. This function is documented on page 9.)

The separator between the glosses is controlled using this key. It controls the separator
for inline glosses, expansion of glosses as well as glosses seen in the glossary. Each of these
functions set a string variable which is expanded when this key is used. The default value
of the string variable is gloss and the default value for this key is ,~, which means by
default the separator between glosses is a comma followed by a space.

602 separator

603 .code:n ={

604 \tl_set:cn {

605 1_lngx_

606 \str_use:N \1__lngx_separator_str
607 _separator_tl

608 F{#1 3}

609 } 3

60 Separator

611 .initial:n ={ ,~ 3},

(End of definition for separator and \1__lngz_separator_tl. This function is documented on page 9.)

The separator between glossary entries is controlled using this key. The default is a \par
token.

6> entry~ separator
613 .tl_set:N

6, entry~ separator
615 .initial:n

616 }

\1__lngx_entry_separator_tl,

{ \par }

(End of definition for entry separator and \l__lngz_entry_separator_tl. This function is documented
on page 9.)
Sometimes language-specific settings are needed. I define the language string variable
with the information retrieved from the lang key of the PDF.

617

es \str_set:Ne \1_lngx_gls_language_str {

6.0 \GetDocumentProperties { document / lang }

620 }

40

gloss
\1lngx_gloss_format:n

expansion
\1lngx_expansion_format:n

\setupglossing

\newgloss
\1lngx_gloss_new:nn

The formatting of glosses is defined here. By default they are printed in small caps.

62> \keys_define:nn { lngx / gloss / format 1} {

623 gloss

624 .cs_gset_protected:Np = \lngx_gloss_format:n #1,
625 gloss

626 .initial:n

{ \textsc { #1 } },

(End of definition for gloss and \lngz_gloss_format:n. These functions are documented on page 8.)

The formatting of expansions is defined here. There is no change in the printing in the
defaults.

627 expansion

628 .cs_gset_protected:Np = \lngx_expansion_format:n #1,
629 ~ expansion

630 .initial:n = { #1 }

631 F

(End of definition for ezpansion and \lngz_ezpansion_format:n. These functions are documented on page
8.)

A wrapper around these options is provided.

632

633 \NewDocumentCommand \setupglossing { m } {
632 \keys_set:nn { lngx_glossing } { #1 }

635 }

(End of definition for \setupglossing. This function is documented on page 8.)

A function that creates new glosses starts here. It takes 2 arguments.

636
637 \cs_new_protected:Npn \lngx_gloss_new:nn #1#2 {
First and foremost, the string received as the first argument should change its case to
lowercase. It is done by \str_lowercase:n. I will use a temporary string variable for
storing the converted value. This needs to be done locally so I start a group and clear the
local str variable.

638 \group_begin:

630 \str_clear:N \1_tmpa_str

650 \str_set:Ne \1_tmpa_str { \str_lowercase:n { #1 } }
Every gloss has its expansion stored in a token list associated to it. The token list is
declared here and it is set to the expansion (i.e., #2).

6sr \tl_gclear_new:c {

642 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
643 }

644 \seq_gclear_new:c {

645 g_lngx_ \str_use:N \1l_tmpa_str _pages_seq

646 }

647 \tl_gset:cn {

648 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
649 } { #2 }

41

Whenever a gloss is defined, an internal protected command is defined. It doesn’t take
any argument.

650 \cs_new_protected:cpn {

651 __lngx_gloss_ \str_use:N \1l_tmpa_str :

652 F{
The arguments are passed to the tagging socket. Since the tagging socket doesn’t expand
everything, an exhaustive expansion is performed with the help of \exp_args:Nee.

653 \exp_args:Nee \UseTaggingSocket

654 { 1ngx / gloss }

655 { \str_use:N \1_tmpa_str }
656 { #2 }

The kernel provides \seq_remove_duplicates:N, but as it iterates on each and every
item, it is slow. The duplicates can be avoided if the items are added to the sequence
conditionally and only when they don’t exist already in the sequence. This way duplicates
are not generated at all. This method is used for adding the page numbers to the sequence.
Imagine if a gloss is used twice on a page, it doesn’t make sense to add the same page
number twice. I use \label-\ref mechanism for saving the page numbers of the glosses.
An internal integer called \g__lngx_page_ref_int is used to generate unique numbers.

657 \int_gincr:N \g__lngx_page_ref_int

658 \exp_args:Ne

659 \label { 1lngx_gloss_ \int_use:N \g__lngx_page_ref_int }
660 \exp_args:Nee

661 \seq_if_in:ceF {

662 g_lngx_ \str_use:N \1l_tmpa_str _pages_seq

663 A

664 \pageref {

665 lngx_gloss_ \int_use:N \g__lngx_page_ref_int
666 }

667 A

668 \seq_gput_right:ce {

669 g_lngx_ \str_use:N \1_tmpa_str _pages_seq

670 A

671 \pageref {

672 1ngx_gloss_ \int_use:N \g__lngx_page_ref_int
673 }

674 }

675 }
The same logic is used for the sequence that stores the glosses in the order they are used.
676 \seq_if_in:NeF \g__lngx_gls_use_order_seq {

677 \str_use:N \1_tmpa_str

678 } {

679 \seq_gput_right:Ne \g__lngx_gls_use_order_seq
680 { \str_use:N \1_tmpa_str }

681 }

682 }

683 \group_end:

684 }

685
ss6 \cs_gset_eq:NN \newgloss \lngx_gloss_new:nn

(End of definition for \newgloss and \lngz_gloss_new:nn. These functions are documented on page 8.)

42

\renewgloss Implementing the \renewgloss command is actually quite easy. The definition of \1ngx_-
gloss_new:nn uses only a single command that errors if the control sequence is already
defined, i.e., \cs_new_protected:cpn. In order to renew a gloss, simply undefining the
existing command declared with \1ngx_gloss_new:nn suffices. Later the arguments are
passed to the same command again. No ITX3 equivalent for this is provided.

687

sss \NewDocumentCommand \renewgloss { m m } {
6so \cs_undefine:c { __lngx_gloss_ #1 : }
6o \lngx_gloss_new:nn { #1 } { #2 }

691 }

(End of definition for \renewgloss. This function is documented on page 8.)

\glx The command to use a gloss takes three arguments where the first is an optional asterisk.
If it is used, the expansion of the gloss is printed without any special tags, just as plain text.
Otherwise the internal command for printing the gloss is used with the third argument.
The third argument is a clist. Any number of glosses can be added to the list. The
action is then repeated on each and every item of the list. The second argument is a
list of options for customising the output. Everything is computed locally so that for
the settings don’t leak. I perform the action on the first item as desired, then the same
is applied to the remaining items with a preceding separator. So that all the items are
separated properly.

692

605 \NewDocumentCommand \glx { s O{ } m } {
604 \group_begin:

605 \IfBooleanT { #1 } {

696 \bool_set_true:N \1_lngx_expansion_bool

607 \str_set:Nn \1__lngx_separator_str { expansion }
698 \keys_set:nn { lngx_glossing } {

699 separator = { , \c_space_t1 }

700 }

o1}

702 \keys_set:nn { lngx_glossing } { #2 }

703 \tl_clear:N \1_tmpa_tl

704 \seq_clear:N \1_tmpa_seq

705 \seq_set_from_clist:Nn \1_tmpa_seq { #3 }
706 \seq_pop_left:NN \1_tmpa_seq \1_tmpa_tl
707 \str_set:Ne \1_tmpa_str {

708 \exp_args:Ne \str_lowercase:n {

709 \tl_use:N \1_tmpa_tl

710 }

o ¥

;2 \bool_if:NTF \1_lngx_expansion_bool {

713 \str_case:Vn \1__lngx_gls_expansion_case_str {
714 { lowercase } {

715 \text_lowercase:n {

716 \tl_use:c {

717 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
718 }

719 }

20 }

7
721 { title~ case~ all } {
722 \text_titlecase_all:n {

43

123 \tl_use:c {

724 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
725 }

726 }

727 }

728 { title~ case~ first } {

720 \text_titlecase_first:n {

730 \tl_use:c {

731 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
732 }

733 }

734 }

735 }

736 } {

737 \use:c { __lngx_gloss_ \str_use:N \1_tmpa_str : }

738 }

730 \seq_if_empty:NF \1_tmpa_seq {

740 \seq_map_inline:Nn \1_tmpa_seq {

741 \group_begin:

742 \str_clear:N \1_tmpa_str

743 \str_set:Ne \1_tmpa_str {

744 \exp_args:Ne \str_lowercase:n { ##1 }

745 }

746 \bool_if:NTF \1_lngx_expansion_bool {

747 \str_case:Vn \1__lngx_gls_expansion_case_str {
748 { lowercase } {

749 \tl_use:N \1_lngx_expansion_separator_tl

750 \text_lowercase:n {

251 \tl_use:c {

752 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
753 }

754 }

755 }

756 { title~ case~ all } {

757 \tl_use:N \1_lngx_expansion_separator_tl

758 \text_titlecase_all:n {

759 \tl_use:c {

760 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
761 }

762 }

763 }

764 { title~ case~ first } {

765 \tl_use:N \1_lngx_expansion_separator_tl

766 \text_titlecase_first:n {

767 \tl_use:c {

768 g_lngx_ \str_use:N \1l_tmpa_str _expansion_tl
769 }

770 }

77t }

772 }

773 A

774 \tl_use:N \1_lngx_gloss_separator_tl

75 \use:c { __lngx_gloss_ \str_use:N \1l_tmpa_str : }
776 }

44

__lngx_dotfill:nnn

Ingx_multicols

77 \group_end:

778 }

779 }

780 \group_end:
780 }

(End of definition for \glz. This function is documented on page 7.)

For the dotfill between the gloss and the expansion, I create a custom internal command.
The code is based on user Jonathan P. Spratte’s answer seen here: topanswers.xyz/tex?
q=8155#a7758. The dotfill should not be tagged at all and in fact it should be suppressed
so that the readers don’t go ‘dot, dot, dot, dot ..” (Frank has convinced us forever with
his TUG 2025 talk).

85 \cs_new_protected:Npn __lngx_dotfill:nnn #1#2#3 {
784 %% Courtesy: Jonathan P. Spratte

785 h% topanswers.xyz/tex?7q=8155#a7758 (LPPL)

86 \1__lngx_entry_separator_tl

757 \smallskip

;88 \group_begin:

80 \rightskip = Opt plus -1fil \prg_do_nothing:
700 \parfillskip = Opt plus 1fil \prg_do_nothing:
70t \leftskip = lem plus 1fil \prg_do_nothing:
70 \finalhyphendemerits = 0 \prg_do_nothing:
_— \parindent = -lem \prg_do_nothing:
704 \bool_if:NT \1__lngx_gls_bold_bool { \textbf } {

795 \1ngx_gloss_format:n {

706 #1

797 }

708 \tl_use:N \1_lngx_glossary_separator_tl

799 }

800 #2

sor \leavevmode

s> \quad

803 \cleaders

804 \hbox to 0.44em { \hss . \hss }

805 \hskip 0.5cm plus 1fill \prg_do_nothing:

g6 \quad

so; \kern Opt \prg_do_nothing:

808 \em #3

809 \1__lngx_entry_separator_tl
g0 \group_end:
811 }

(End of definition for __lngz_dotfill:nnn.)

Here I define the custom multicolumn environment which does nothing if the number of
columns is I.

812

13 \NewDocumentEnvironment { lngx_multicols } { m } {

814 \int_compare:nNnTF { 1 } < {

815 \int_use:N \1__lngx_glossary_columns_int
816 } {
817 \begin { multicols } {

45

topanswers.xyz/tex?q=8155#a7758
topanswers.xyz/tex?q=8155#a7758

\1lngx_gloss_list:

818 \int_use:N \1__lngx_glossary_columns_int

819 Y}L#11]

s20 + { #1 3}

s2r \noindent

822 F o{

823 \int_compare:nNnT { 1 } < {

824 \int_use:N \1__lngx_glossary_columns_int
g5 F o{

826 \end { multicols }

827 }

828 }

(End of definition for ingz_multicols. This function is documented on page 18.)

Finally we come to the command that prints the glosses. First it sets the boolean for
creating the aux file to false.

829

830 \cs_new_protected:Npn \lngx_gloss_list: {

s3: \bool_gset_false:N \g_lngx_trigger_aux_file_bool
I start a group, clear a scratch sequence and set it equal to the sequence that stores the
order of the glosses. If the aux file is read, the aux flag is added to the variable, or else it
is read on the fly.

832 \group_begin:

833 \seq_clear:N \1_tmpa_seq

s32 \seq_set_eq:NN \1_tmpa_seq \g__lngx_gls_use_order_seq
If the sorting order is set to alphabetical, the sequence needs to get sorted. For that, I
use IATEX 3’s mechanism for sorting strings.

835 \str_case:Vn \1__lngx_gls_sorting_order_str {

836 { alphabetical } {

837 \seq_sort:Nn \1_tmpa_seq {

838 \str_compare:nNnTF { ##1 } > { ##2 } {
839 \sort_return_swapped:

840 P {

841 \sort_return_same:

842 }

843 }

844 }

845 }

If the style used is inline, the glosses come after the each other. That means the default
entry separator, i.e., \par must be changed. Here I set it to ,~ by default (locally). The
separator between the gloss and the entry is defined as a colon followed by a space.

ss6 \str_if_eq:VnTF \1__lngx_glossary_style_str { inline } {

847 \group_begin:

848 \keys_set:nn { lngx_glossing } {

849 separator = { \c_colon_str \c_space_tl },
850 entry~ separator ={,~1}

851 }

Then each item from the sequence is popped (from the left). It is then passed to a string
variable to get rid of the catcodes. The string variable is then used in \MakeLinkTargetx.
The gloss is then printed with its separator in bold shape.

852 \tl_clear:N \1_tmpa_tl

46

853 \str_clear:N \1_tmpa_str

854 \seq_pop_left:NN \1_tmpa_seq \1_tmpa_tl

855 \str_set:NV \1_tmpa_str \1_tmpa_tl

856 \tag_mc_end:

857 \tag_struct_begin:n {

858 tag = { Span },

859 }

860 \tag_mc_begin:n {

861 tag = { Span }

862 }

863 \MakeLinkTarget * {

864 Ingx_ \str_use:N \1_tmpa_str _glossary

865 }

866 \bool_if:NT \1__lngx_gls_bold_bool { \textbf } {
867 \1lngx_gloss_format:n {

868 \tl_use:N \1_tmpa_tl

869 \tl_use:N \1_lngx_glossary_separator_tl
870 }

871 }

872 \tag_mc_end:

873 \tag_struct_end:

Then it is checked in which case the expansion is requested. According to that the t1 is
printed.

874 \str_case:Vn \1__lngx_gls_expansion_case_str {

875 { lowercase } {

876 \lngx_expansion_format:n {

877 \text_lowercase:n {

878 \tl_use:c {

879 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
880 }

881 }

882 }

883 }

884 { title~ case~ all } {

885 \lngx_expansion_format:n {

886 \text_titlecase_all:n {

887 \tl_use:c {

888 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
889 }

890 }

891 }

892 }

803 { title~ case~ first } {

894 \lngx_expansion_format:n {

805 \text_titlecase_first:n {

896 \tl_use:v {

897 g_lngx_ \str_use:N \1_tmpa_str _expansion_tl
898 }

899 }

900 }

g0z ¥

902 }

After printing one entry successfully, if there are any more items left in the sequence, they

47

are printed with the same method, but with an entry separator at the beginning,.

903 \seq_if_empty:NF \1_tmpa_seq {

904 \seq_map_inline:Nn \1_tmpa_seq {

905 \group_begin:

906 \tl_use:N \1__lngx_entry_separator_tl

907 \MakeLinkTarget * { Ingx_ ##1 _glossary }

908 \textbf {

909 \1ngx_gloss_format:n {

910 ##1

orr \tl_use:N \1_lngx_glossary_separator_tl

or2 }

913 }

o4 \str_case:Vn \1__lngx_gls_expansion_case_str {
015 { lowercase } {

916 \1lngx_expansion_format:n {

017 \text_lowercase:n {

ot8 \exp_not:v { g_lngx_ ##1 _expansion_tl }
919 }

920 }

921 }

922 { title~ case~ all } {

023 \1lngx_expansion_format:n {

024 \text_titlecase_all:n {

925 \exp_not:v { g_lngx_ ##1 _expansion_tl }
026 ¥

927 }

928 }

020 { title~ case~ first } {

930 \1lngx_expansion_format:n {

031 \text_titlecase_first:n {

032 \exp_not:v { g_lngx_ ##1 _expansion_tl }
933 }

934 }

935 }

936 }

937 \group_end:

938 }

939 }

940 \group_end:

o+ o{

If the style is not inline, then the default block style is assumed and firstly the word
‘glossary’ is printed in a sectioning command controlled by the keys. The \glossaryname
command is provided by babel. If it is undefined, that means the user hasn’t loaded babel.
In that case, I define the command with the string Glossary.

042 \ProvideDocumentCommand \glossaryname { } { Glossary }

Then the 1ngx_multicols environment starts which doesn’t do anything if the number
of columns is 1.

943 \begin { lngx_multicols } {

044 \str_if_eq:VnF \1__lngx_gls_sectioning_str { null } {
945 \use e {

946 \exp_not:N \use:c

047 { \str_use:N \1__lngx_gls_sectioning_str }

48

048 \bool_if:NF \1__lngx_gls_section_number_bool { * }

0490 { \exp_not:N \glossaryname }
950 }

051 }

952 }

953 \seq_map_inline:Nn \1_tmpa_seq {

In this style, even the page numbers are printed along with glosses. We save the page
numbers in a temporary sequence which is locally cleared.

054 \group_begin:

955 \seq_clear:N \1_tmpb_seq

956 \seq_map_inline:cn { g_lngx_ ##1 _pages_seq } {
The pages are hyperlinked with the internal PDF names.

957 \seq_put_right:Ne \1_tmpb_seq { ####1 }

958 }

The page numbers are separated using dotfill. Before the glosses, \MakeLinkTargetx* is
used.

959 __lngx_dotfill:nnn {

960 \MakeLinkTarget * { lngx_ ##1 _glossary }
961 ##1

962 } Ao

The case of expansion is checked and then the appropriate casing commands are used for
expansions.

063 \str_case:Vn \1__lngx_gls_expansion_case_str {
964 { lowercase } {

965 \1lngx_expansion_format:n {

966 \text_lowercase:n {

967 \exp_not:v { g_lngx_ ##1 _expansion_tl }
068 }

969 }

970 }

97t { title~ case~ all } {

972 \1lngx_expansion_format:n {

973 \text_titlecase_all:n {

o074 \exp_not:v { g_lngx_ ##1 _expansion_tl }
975 }

976 }

977 }

978 { title~ case~ first } {

979 \1ngx_expansion_format:n {

980 \text_titlecase_first:n {

081 \exp_not:v { g_lngx_ ##1 _expansion_tl }
082 }

983 }

984 }

985 }

086 A
The list of page numbers is printed.

987 \seq_use:Nn \1_tmpb_seq { ,~ }

088 }

989 \group_end:

990 }

49

\listofglosses

991 \end { Ilngx_multicols }

992 }
993 \group_end:
004 }

(End of definition for \lngz_gloss_list:. This function is documented on page 18.)

Here is the command that defines the user-side command for printing the glosses. It
defines the separator by default if not provided. All settings are local in order to avoid
leaking. \1_lngx_separator_tl is the generic string that is used inside the separator
key that sets the separator contextually. This command uses the ¥TEX3 function for
printing the glosses.

995

006 \NewDocumentCommand \listofglosses { 0 { } } {

007 \group_begin:

o0t \str_set:Nn \1__Ingx_separator_str { glossary }
90 \keys_set:nn { lngx_glossing } {

1000 separator = { \c_colon_str \c_space_tl }
wor

o= \keys_set:nn { lngx_glossing } { #1 }

w03 \lngx_gloss_list:

004 \group_end:

1005 }

w06 (/glossing)

(End of definition for \listofglosses. This function is documented on page 8.)

50

LINGUIS'CIX-I];)A Documentation | IAMTEX 3-interface

w007 (*ipa)

008 \ProvidesExplPackage{linguistix-ipa}

1009 {2026-01-19}

1010 {v0.7}

Tomz Tk

To12 A package for typesetting the IPA

o013 (International Phonetic Alphabet) from
1014 the ‘LinguisTiX’ bundle.,

to15 }

Then, I load unicode-math, LineuisCiX-nrss and LineuisCiX-8ase (if they are not already
loaded).

1016
wor; \IfPackageLoadedF { unicode-math } {
o5 \RequirePackage { unicode-math }

019

02r \IfPackageLoadedF { linguistix-base } {
022 \RequirePackage { linguistix-base }

1023 }

025 \IfPackageLoadedF { linguistix-nfss } {

w026 \RequirePackage { linguistix-nfss }

027 }

1028

1020 \IfPackageLoadedF { linguistix-fixpex } {

030 \RequirePackage { linguistix-fixpex }

1031
\ipatext The \ipatext command along with its starred variant is developed here.
\ipatext*
1035 \NewDocumentCommand \ipatext { s m } {
1034 \IfBooleanTF { #1 } {
1035 {
1036 \1lngxipa
1037 / #2 /
1038
39}
1040
To4t \1lngxipa
1042 [#2]
1043 }
1044 }
1045 F

P

(End of definition for \ipatezt and \ipatezt*. These functions are documented on page I0.)

5I

\g__lngx_ipa_main_fonts_prop

\g__Ingx_ipa_main_font_features_tl

ipa upright

ipa upright features

ipa bold upright

ipa bold upright features

ipa

ipa bold

ipa s

ipa italic
italic features
ipa bold italic
italic features
ipa slanted
lanted features

ipa bold slanted

ipa bold s

ipa

ipa bold

ipa smal

lanted features
ipa swash

swash features

ipa bold swash

swash features

ipa small caps

1 caps features

These variables store the values for fonts and features for the serif 1PA.

1046
1047 \prop_gclear_new:N \g__lngx_ipa_main_fonts_prop
08 \tl_gclear_new:N \g__lngx_ipa_main_font_features_tl
1049
\clist_map_inline:nn {

upright,

bold~ upright,

italic,

bold~ italic,

slanted,

bold~ slanted,

swash,

bold~ swash,

small~ caps

o

1050

1058
1059

1060

All the keys here are prefixed with the word ipa in order to distinguish them from the
keys provided by the LineuisCiX-roncs package. These keys have identical method as

their text counterparts, though.

\keys_define:nn { Ilngx_keys } {
ipa~ #1
.code:n ={
\group_begin:
\str_clear:N \1l_tmpa_str
\str_set:Ne \1_tmpa_str {
\text_titlecase_all:n { #1 }
Font

1061
1062
1063
1064
1065
1066
1067
1068
1069 }

\str_replace_all:Nnn \1_tmpa_str { ~ } { }
\prop_gput:Nne \g__lngx_ipa_main_fonts_prop

{ ipa~ #1 }

1070

1071

1072

1073 { \str_use:N \1_tmpa_str = { ##1 } }
1074 \group_end:

1075 } F)

1076 ipa~ #1~ features

1077 .code:n = {

\group_begin:

\str_clear:N \1_tmpa_str

\str_set:Ne \1_tmpa_str {
\text_titlecase_all:n { #1 }
Features

1078
1079
1080
1081
1082
1083 }

\str_replace_all:Nnn \1_tmpa_str { ~ } { }
\prop_gput:Nne \g__lngx_ipa_main_fonts_prop

{ ipa~ #1~ features }

1084
1085

1086

1087 {

1088 \str_use:N \1_tmpa_str = { ##1 }
1089 }

1090 \group_end:

1091 }

1092}

1003 }

52

(End of definition for \g__lngz_ipa_main_fonts_prop and others. These functions are documented on page
10.)

ipa extra features

This key adds to the property that stores the extra features for the serif fonts.
1094

w005 \keys_define:nn { lngx_keys } {

1096 ipa~ extra~ features

1097 .prop_gput:N = \g__lngx_ipa_main_fonts_prop
1098 }

(End of definition for ipa eztra features. This function is documented on page 12.)

53

\g__lngx_ipa_sans_fonts_prop Since the only difference between the upcoming keys is that of the word sans and mono,
\g__lngx_ipa_sans_font_features_tl we combine them together and use a nested clist. The rest of the mechanism is identical.
\g__lngx_ipa_mono_fonts_prop 1000
\g__lngx_ipa_mono_font_features t1 .., \prop_gclear_new:N \g__lngx_ipa_sans_fonts_prop
ipa sans upright o \tl_gclear_new:N \g__lngx_ipa_sans_font_features_tl
ipa sans upright features o2 \prop_gclear_new:N \g__lngx_ipa_mono_fonts_prop
ipa sans bold upright wos \tl_gclear new:N \g__lngx_ipa mono_font_features_tl
ipa sans bold upright features ™o¢
o5 \clist_map_inline:nn {
o6 Sans,

ipa sans italic
ipa sans italic features

.) . 1ro7 mono
ipa sans bold italic D} 1
ipa sans bold italic features woo \clist_map_inline:nn {
ipa sans slanted = upright,
ipa sans slanted features bold~ upright,
ipa sans bold slanted ... italic,
ipa sans bold slanted features s bold~ italic,
ipa sans swash m slanted,
ipa sans swash features s bold~ slanted,
ipa sans bold swash % swash,
ipa sans bold swash features " bold~ swash,
. 1118 small~ caps
ipa sans small caps Y1
. 1119
ipa sans small caps features 1120 \keys_define:nn { lngx_keys } {
ipa mono upright s ipa- #1- ##1
ipa mono upright features | .code:n = {
ipa mono bold upright . \group_begin:
ipa mono bold upright features ..., \str_clear:N \1_tmpa_str
ipa mono italic s \str_set:Ne \1_tmpa_str {
ipa mono italic features =26 \text_titlecase_all:n { ##1 }
ipa mono bold italic = Font
ipa mono bold italic features — *=* ¥
ipa mono slanted tstr_replace_ali:Nnnl\l_t?pa_szi {f~ {7 .
ipa mono slanted features e prop_gput:cne 5—— ngx_ipa_ -tonts_prop
) 3t { ipa~ #1~ ##1 }
ipa mono bold slanted { #aas1 }
i bold slanted features
1pa mono bo 133 \group_end:
ipa mono swash },
ipa mono swash features . ipa~ #1~ ##1~ features
ipa mono bold swash .. .code:n = {
ipa mono bold swash features w3/ \group_begin:
ipa mono small caps w38 \str_clear:N \1_tmpa_str
ipa mono small caps features @3 \str_set:Ne \1_tmpa_str {
1140 \text_titlecase_all:n { #1 }
1141 Features
1142 }
1143 \str_replace_all:Nnn \1_tmpa_str { ~ } { }
1144 \prop_gput:cne { g__lngx_ipa_ #1 _fonts_prop }
1145 { ipa~ #1~ ##1~ features }
1146 {
1147 \str_use:N \1_tmpa_str = { ####1 }
1148 }
149 \group_end:
1150 }

54

\g__lngx_ipa_main_font_tl
\g__lngx_ipa_sans_font_tl
\g__lngx_ipa_mono_font_tl
ipa main font
ipa sans font
ipa mono font

ipa newcm

5t }

m2 F

53 \keys_define:nn { lngx_keys } {

1154 ipa~ #1~ extra~ features

1155 .prop_gput:c = {

1156 g__lngx_ipa_ #1 _fonts_prop
1157 }

1158 }

5o T

(End of definition for \g__lngz_ipa_sans_fonts_prop and others. These functions are documented on page
II.)

These keys provide keys to set fonts for 1PA.

1160

=6 \clist_map_inline:nn {
1162 main,

m63 Sans,

1164 mono

1165 } {

=66 \keys_define:nn { lngx_keys } {

1167 ipa~ #1~ font

1168 .tl_gset:c = { g__lngx_ipa_ #1 _font_tl }
usg }

mo }

(End of definition for \g__lngz_ipa_main_font_tl and others. These functions are documented on page 10.)

This key is of type .meta:n. It sets certain other keys that enable the New Computer
Modern fonts in book weight and in all of the serif, sans serif and monospaced families for
IPA. Stylistic set 5 of NewCM is dedicated to linguistics. So we use it here. For correct
diacritic placement, we need HarfBuzz renderer. That also is loaded here.

P

=72 \keys_define:nn { lngx_keys } {

173 ipa~ newcm

1174 .meta:n =

1175 ipa~ extra~

1176 features = {

Prom Renderer = {HarfBuzz},

1178 StylisticSet = {05}

1179 },

1180 ipa~ sans~ extra~

81 features =

1182 Renderer = {HarfBuzz},

1183 StylisticSet = {05}

1184 },

1185 ipa~ mono~ extra~

1186 features =

1187 Renderer = {HarfBuzz},

188 StylisticSet = {05}

1189 },

1190 ipa~ main~ font = { NewCM10-Book.otf },

gt ipa~ sans~ font = { NewCMSans10-Book.otf },
1192 ipa~ mono~ font = { NewCMMono10-Book.otf }

55

1193 }
o4 }

(End of definition for ipa newem. This function is documented on page 10.)

ipa newcm sans This is a .meta:n key that sets the default 1PA font to the sans family.
1195
=06 \keys_define:nn { lngx_keys } {
1197 ipa~ newcm~ sans

1108 .meta:n ={

1199 ipa~ extra~

1200 features =

1201 Renderer = {HarfBuzz},
StylisticSet = {05}

1203 },

1204 ipa~ sans~ extra~

1205 features =

1206 Renderer = {HarfBuzz},

207 StylisticSet = {05}

1208 3},

1209 ipa~ mono~ extra~

1210 features = {

1211 Renderer = {HarfBuzz},

ro12 StylisticSet = {052}

1213 },

1214 ipa~ main~ font = { NewCMSans10-Book.otf },
1215 ipa~ sans~ font = { NewCMSans10-Book.otf },
1216 ipa~ mono~ font = { NewCMMono10-Book.otf }
w7k

218 }

(End of definition for ipa newem sans. This function is documented on page I0.)

ipa newcm mono This is a .meta:n key that sets the default 1PA fonts to the monospaced family.

220 \keys_define:nn { lngx_keys } {
1201 ipa~ newcm~ mono

1222 .meta:n =4

1223 ipa~ extra~

1224 features =

1225 Renderer = {HarfBuzz},

1226 StylisticSet = {05}

1227 },

1228 ipa~ sans~ extra~

1229 features =

1230 Renderer = {HarfBuzz},

- StylisticSet = {05}

1232 },

1233 ipa~ mono~ extra~

1234 features = {

1235 Renderer = {HarfBuzz},

1236 StylisticSet = {05}

1237 },

1238 ipa~ main~ font = { NewCMMono10-Book.otf },
1239 ipa~ sans~ font = { NewCMSans10-Book.otf },

56

1240 ipa~ mono~ font = { NewCMMono10-Book.otf }
I
1242 }

(End of definition for ipa newem mono. This function is documented on page 10.)

ipa newcm regular This is a .meta:n key that sets the default fonts to the regular variant of the New
Computer Modern family.

1243

244 \keys_define:nn { lngx_keys } {

25 ipa~ newcm~ regular

1246 .meta:n = {

1247 ipa~ extra-~

1248 features =

1249 Renderer = {HarfBuzz},

250 StylisticSet = {05}

1251 },

1252 ipa~ sans~ extra~

1253 features =

1254 Renderer = {HarfBuzz},

1255 StylisticSet = {05}

1256 },

1257 ipa~ mono~ extra~

1258 features = {

1250 Renderer = {HarfBuzz},

1260 StylisticSet = {05}

1261 },

1262 ipa~ main~ font = { NewCM10-Regular.otf 1},
1263 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1264 ipa~ mono~ font = { NewCMMonol0O-Regular.otf }
1265}

1266 }

(End of definition for ipa newem regular. This function is documented on page 10.)

ipa newcm regular sans This is a .meta:n key that sets the default 1PA fonts to the regular sans variant of the
New Computer Modern family.

=65 \keys_define:nn { lngx_keys } {
260 ipa~ newcm~ regular~ sans

270 .meta:n = {

1271 ipa~ extra~

1272 features =

1273 Renderer = {HarfBuzz},
1274 StylisticSet = {05}

1275 }’

1276 ipa~ sans~ extra~

1277 features =

1278 Renderer = {HarfBuzz},
1279 StylisticSet = {05}

1280 },

1281 ipa~ mono~ extra~

1282 features =

1283 Renderer = {HarfBuzz},

57

1284 StylisticSet = {05}

1285 },

1286 ipa~ main~ font = { NewCMSans10-Regular.otf },
1287 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1288 ipa~ mono~ font = { NewCMMono10-Regular.otf }
=89}

1200 }

(End of definition for ipa newem regular sans. This function is documented on page 10.)

ipa newcm regular mono Thisis a .meta:n key that sets the default 1PA fonts to the regular monospaced variant
of the New Computer Modern family.
12g1
20 \keys_define:nn { 1lngx_keys } {
1293 ipa~ newcm~ regular~ mono

204 .Meta:n =

1295 ipa~ extra~

1296 features =

1207 Renderer = {HarfBuzz},

1208 StylisticSet = {05}

1299 }3

1300 ipa~ sans~ extra~

1301 features =

1302 Renderer = {HarfBuzz},

1303 StylisticSet = {05}

1304 },

1305 ipa~ mono~ extra~

1306 features =

1307 Renderer = {HarfBuzz},

1308 StylisticSet = {05}

1309 }5

1310 ipa~ main~ font = { NewCMMono10-Regular.otf },
131 ipa~ sans~ font = { NewCMSans10-Regular.otf },
1312 ipa~ mono~ font = { NewCMMonol0O-Regular.otf }
1313 }

13}

(End of definition for ipa newem regular mono. This function is documented on page 10.)
We set the ipa newcm key by default.

1315

356 \1ngx_set_keys:n {ipa~ newcm}

\lngx_set_main_ipa_font:nn Here, I develop font-setting commands for 1PA. These commands are set with
\lngx_main_ipa: \setfontfamily, so they keep overriding the definitions of the same command names.
lngx_ipa_rm_nfss These commands set NFSs families that we use later for setting the 1PA fonts. These
\lngx_set_sans_ipa_font:nn functions and NFss families are public, but manipulating them has effects (mostly desired)
\lngx_sans_ipa: at several other places, so use them with caution.
Ingx_ipa_sf_nfss
\lngx_set_mono_ipa_font:nn .3 \cs_new_protected:Npn \lngx_set_main_ipa_font:nn #1#2 {
\1lngx_mono_ipa: =y \setfontfamily \lngx_main_ipa: [

lngx_ipa_tt_nfss 120 #1,
1321 NFSSFamily = { 1ngx_ipa_rm_nfss }
na 1 {#2°}
1323 }

58

Ingx_ipa

\1lngxipa
\1lngx_ipa:

325 \cs_new_protected:Npn \lngx_set_sans_ipa_font:nn #1#2 {
26 \setfontfamily \lngx_sans_ipa: [

1327 #1,

1328 NFSSFamily = { 1lngx_ipa_sf_nfss }
1329] { #2 }

1330 }

I331
1332 \cs_new_protected:Npn \lngx_set_mono_ipa_font:nn #1#2 {
1335 \setfontfamily \lngx_mono_ipa: [

1334 #1)

1335 NFSSFamily = { lngx_ipa_tt_nfss }
1336] { #2 }

1337 }

1338

1330 \CS_generate_variant:Nn \lngx_set_main_ipa_font:nn { VV }
1350 \CS_generate_variant:Nn \lngx_set_sans_ipa_font:nn { VV }
32 \CS_generate_variant:Nn \lngx_set_mono_ipa_font:nn { VV }

(End of definition for \lngz_set_main_ipa_font:nn and others. These functions are documented on page I9.)

Here, I create a ‘super font family’ with \1ngx_super_font_family:nn, a macro provided
by LineuisCiX-nrss. Please see the documentation of that package for more information.
Note that 1lngx_ipa is a super family responsible for all the 1PA-related functions of the
package. It is associated with the NFss families defined just now for the IPA.

1342

1303 \1ngx_super_font_family:nn { lngx_ipa } {

1344 T = { lngx_ipa_rm_nfss },

1345 sf = { lngx_ipa_sf_nfss },
1346 tt = { lngx_ipa_tt_nfss }
1347 }

(End of definition for ingz_ipa. This function is documented on page 19.)

I use \1ngx_softer_super_font_family:n provided by LineuisCiX-~rssfor defining this
switch to the 1PA.

1348

1320 \cS_new_protected:Npn \lngx_ipa: {

150 \lngx_softer_super_font_family:n { lngx_ipa }
I351 }

1353 \cs_gset_eq:NN \lngxipa \lngx_ipa:

(End of definition for \lngzipa and \lngz_ipa:. These functions are documented on page 10.)

Now, I have used the exact same method that I described in the implementation of
LineursCiX-rones for setting the size variants. This is done with lazy evaluation, just
before \begin{document}.

1354

1355 \clist_map_inline:nn {

1356 main,

1357 Sans,

1358 IONO

1359 } {

360 \Ccs_new_protected:cpn {

59

1361 Ingx_build_ #1 _ipa_font_features:

1362 } {

1363 \prop_map_inline:cn { g__lngx_ipa_ #1 _fonts_prop } {
1364 \tl_gput_right:cn {

1365 g__lngx_ipa_ #1 _font_features_tl
1366 T { ####2 T

1367 }

1368 }

1369 }

1370

372 \hook_gput_code:nnn { begindocument / before } { . } {
372 \lngx_build_main_ipa_font_features:

373 \lngx_set_main_ipa_font:VV

1374 \g__lngx_ipa_main_font_features_tl

1375 \g__lngx_ipa_main_font_tl

1376 \1ngx_build_sans_ipa_font_features:
377 \lngx_set_sans_ipa_font:VV

1378 \g__lngx_ipa_sans_font_features_tl
1379 \g__lngx_ipa_sans_font_tl

380 \1lngx_build_mono_ipa_font_features:
e \lngx_set_mono_ipa_font:VV

1382 \g__lngx_ipa_mono_font_features_tl
1383 \g__lngx_ipa_mono_font_tl

1384 }

o {/ipa)

60

\g_lngx_main_language_tl

\g_lngx_languages_clist

\1lngx_languages:nn
\providelanguage

LineuisCiX-LaNecuaees Documentation | IATEX 3-interface

86 (xlang)

1387 \ProvidesExplPackage{linguistix-languages}

1388 {2026-01-19}

1389 {v0.7%}

1390 ¥

1301 An assistant package for automatically
1392 loading fonts and more settings for
1303 languages.’%

1394 }

LineuisCiX-sase is loaded (if not already done) for the key-value parser.

1395

306 \IfPackageLoadedF { linguistix-base } {

1307 \RequirePackage { linguistix-base }

1308 F

The babel package is loaded with provide*=+* option as it mandates the use of modern
mechanism.

1399

oo \IfPackageLoadedF { babel } {

4o: \RequirePackage [provide * = *] { babel }

1402 }

I declare a t1 that I will use for storing the main language. It is publicly available.

1403

104 \tl_new:N \g_lngx _main_language_tl
(End of definition for \g_lngz_main_language_tl. This function is documented on page I9.)

I declare a clist that I will use for storing languages. It is publicly available.

1405

o6 \clist_new:N \g_lngx_languages_clist

(End of definition for \g_lngz_languages_clist. This function is documented on page 19.)

I develop a wrapper macro with a :VV variant.

1407

1408 \CS_new_protected:Npn \lngx_languages:nn #1#2 {
1409 \babelprovide [#1] { #2 }

w0 }

1411
4= \Cs_generate_variant:Nn \lngx_languages:nn { VV }
3 \cs_gset_eq:NN \providelanguage \lngx_languages:nn

(End of definition for \lngz_languages:nn and \providelanguage. These functions are documented on page
19.)

The babel package produces an ‘info’ message if the fonts are not set with \babelfont.
Mostly they aren’t set with this mechanism, so this warning is inevitable in default situ-
ations. Imagine loading LineuisTiX-roncs first and then loading this package. The fonts
are already set with \setmainfont and friends. Thus we will be prompted with this warn-
ing always. In order to avoid that, I renew the wrapper functions around \setmainfont
to \babelfont. Note that this only affects the usage when LineuisCiX-roncs is loaded. If
you use LincuisCiX-Laneuaces and then use \setmainfont-like commands, you will get
babel’s warning and I have no intention to suppress that behaviour.

61

1414
s \IfPackageLoadedTF { linguistix-fonts } {
46 \cs_gset_protected:Npn \lngx_set_main_font:nn #1#2 {

e \babelfont { rm } [#1] { #2 }

1418 }

ue \cs_gset_protected:Npn \lngx_set_sans_font:nn #1#2 {
1420 \babelfont { sf } [#1 1 { #2 }

e}

22 \cs_gset_protected:Npn \lngx_set_mono_font:nn #1#2 {
1423 \babelfont { tt } [#1 1 { #2 }

1424 }

uas Foo{

426 \cs_new_protected:Npn \lngx_set_main_font:nn #1#2 {
1427 \babelfont { rm } [#1] { #2 }

w28}

420 \Cs_new_protected:Npn \lngx_set_sans_font:nn #1#2 {
1430 \babelfont { sf } [#1] { #2 }

I431 }

432 \cs_new_protected:Npn \lngx_set_mono_font:nn #1#2 {
1433 \babelfont { tt } [#1 1 { #2 }

1434 }

1435 }

\lngx_other_main_font:nnn The following macros set fonts for other languages using the \babelfont command.
\1lngx_other_sans_font:nnn 1436
\lngx_other_mono_font:nnn ., \cs_gset_protected:Npn \lngx_other_main_font:nnn #1#2#3 {

1438 \babelfont [#1] { rm } [#2] { #3 }

1439

1440

s: \CS_gset_protected:Npn \lngx_other_sans_font:nnn #1#2#3 {

s> \babelfont [#1 1 { sf } [#2] { #3 2

143

1444

45 \CS_gset_protected:Npn \lngx_other_mono_font:nnn #1#2#3 {

1s6 \babelfont [#1 1 { tt } [#2 1 { #3 }

1447 }

1448

1440 \CS_generate_variant:Nn \lngx_other_main_font:nnn { nee }

uso \CS_generate_variant:Nn \lngx_other_sans_font:nnn { nee }

us: \CS_generate_variant:Nn \lngx_other_mono_font:nnn { nee }

(End of definition for \lngz_other_main_font:nnn, \lngz_other_sans_font:nnn, and \lngz_other_mono_-
font:nnn. These functions are documented on page I8.)

\1ngx_load_languages:n I provide a simple macro that only does the job of loading languages, both in B*TEX3
\loadlanguages style, as well as the in the plain style.
1452
153 \cs_new_protected:Npn \lngx_load_languages:n #1 {
uss \lngx_set_keys:n { languages = { #1 } }
1455 }
1456

us7 \cs_gset_eq:NN \loadlanguages \lngx_load_languages:n

(End of definition for \lngz_load_languages:n and \loadlanguages. These functions are documented on
page 19.)

62

I equate the \arabic command to a new command I want to provide. This is done in
order to get control over the default FXTEX counters. The command is manipulated when
plugs are activated.

\1lngx_counter:n

1458
us0 \cs_gset_eq:NN \lngx_counter:n \arabic

(End of definition for \lngz_counter:n. This function is documented on page I19.)
Now all the default counters are changed from \arabic to \1ngx_counter:n.

1460

u6: \cs_set:Npn \thechapter {

1462 \1lngx_counter:n { chapter }
1463 }

62 \cs_set:Npn \thesection {

1465 \1lngx_counter:n { section }
1466 }

16, \cs_set:Npn \thesubsection {

1468 \1lngx_counter:n { subsection }
1469 }

170 \cs_set:Npn \thesubsubsection {
47t \1lngx_counter:n { subsubsection }
1472 }

473 \cs_set:Npn \theparagraph {

474 \1lngx_counter:n { section }
1475 }

476 \cs_set:Npn \thesubparagraph {
477 \1lngx_counter:n { section }
1478 }

79 \cs_set:Npn \thepage {

uso \lngx_counter:n { page }

usr }

s> \cs_set:Npn \thefigure {

1483 \1lngx_counter:n { figure }

1484 }

ues \cs_set:Npn \thetable {

486 \lngx_counter:n { table }

1487 }

uss \cs_set:Npn \thefootnote {

1489 \1lngx_counter:n { footnote }
1490 }

1o: \cs_set:Npn \thempfootnote {

o= \lngx_counter:n { mpfootnote }
103

104 \Cs_set:Npn \theequation {

1495 \1lngx_counter:n { equation }
1496 }

Here, I define the socket 1ngx/native-numbering.
1497

1408 \socket_new:nn { lngx / native-numbering } { 0 }

strict This plug sets the numbering strictly to the main language. If used, the function \1ngx_-
counter:n is changed to the respective \xxxxcounter command (where xxxx stands for
the main language of the document).

63

logical

off

native numbering

1499
1500 \socket_new_plug:nnn { lngx / native-numbering }

501 { strict } {

o2 \cs_gset_eq:Nc \lngx_counter:n {

1503 \tl_use:N \g_lngx_main_language_tl counter
wos T

1505 }

(End of definition for strict. This function is documented on page I3.)

Here, I define the logical plug for 1ngx/native-numbering. The mechanism is pretty
similar as the one used for strict, but here I don’t renew it to the main language counter,
but instead I use the \localecounter command provided by the babel package. The
counters are then printed contextually (and TgX-logically).

1506

1507 \Socket_new_plug:nnn { lngx / native-numbering }

1508 { logical } {

oo \CS_gset_protected:Npn \lngx_counter:n ##1 {
1510 \localecounter { digits } { ##1 }

oo}

e }

(End of definition for logical. This function is documented on page 14.)

If the off plug is selected, then native digits are not needed. Thus the \1ngx_counter:n
is set to the unmodified \arabic again.

1513

52 \Socket_new_plug:nnn { lngx / native-numbering} { off } {

s \cs_gset_eq:NN \lngx_counter:n \arabic

1516 }

(End of definition for off. This function is documented on page 14.)

The three choices for the native numberingkey,i.e., strict, logical and off are defined
here. All of them activate the plugs of their name with the 1ngx/native-numbering
socket.

1517

58 \CS_generate_variant:Nn \socket_assign_plug:nn { ne }

1519

520 \keys_define:nn { lngx_keys } {

1521 native~ numbering

1522 .choices:nn = { strict,logical,off } {

1523 \socket_assign_plug:ne { lngx / native-numbering } {
1524 \str_use:N \1_keys_choice_str

1525 }

1526 \socket_use:n { lngx / native-numbering }

1527 },

Similarly, we set the default value to on.

1528 native~ numbering
1529 .default:n = { strict }
1530 }

(End of definition for native numbering. This function is documented on page 13.)

64

\lngx_misc_reset:

languages

Despite having sufficient control with the two plugs, there are some additional settings
required by some languages that are often not needed by most others. E.g., Marathi
renews the way enumerated lists are printed and that is supposed to be renewed when
the language is changed. I provide a shorthand to be used for resetting such settings. It
can be used in the packages of languages that don’t need special settings.

1531

532 \cs_new_protected:Npn \lngx_misc_reset: {

1533 \cs_set:Npn \theenumii { \alph { enumii } }

535 \cs_set:Npn \labelenumii { (\theenumii) }

1535 \cs_set:Npn \theenumiii { \roman { enumiii } }

1536 \cs_set:Npn \labelenumiii { \theenumiii . }

537 \cs_set:Npn \theenumiv { \Alph { enumiv } }

1538 \cs_set:Npn \labelenumiv { \theenumiv . }

1539 \IfPackageLoadedT { expex } {

1540 \lingset { alpha }

1541 }

42 \cs_gset_eq:NN \emph \textit
1543 F

(End of definition for \lngz_misc_reset:. This function is documented on page 19.)
Here, I write a message to be issued when user loads an unsupported language.

1544
545 \msg_new:nnn { linguistix-languages } { no_support } {

546 ‘#1°~ is~ not~ supported.\\

1547 If~ you~ want~ it~ to~ be~ supported,~ please~ report~
1548 to~ the~ maintainers.

1549 }

I use the .code:n type for developing the languages key.

1550
550 \keys_define:nn { lngx_keys } {

1552 languages

555 .code:n =4

I pass the argument of this key to a global clist. It is stored for public use.

1554 \clist_gset:Nn \g_lngx_languages_clist { #1 }

Since this is a public clist for accessing the names of the languages, I copy it to a
temporary one so that the items of public interest are not lost during the operations.
1555 \clist_set_eq:NN \1_tmpa_clist \g_lngx_languages_clist

I check if the clist is empty or not. If it is empty, that means the user used the key
without a value. In that case, babel already loads an ‘info’-message saying that no language
is loaded. So we ignore the branch and silently move to the false branch.

1556 \clist_if_empty:NF \1_tmpa_clist {

In the false branch, I pop out the first element from the clist to \1_tmpa_t1. This is the
first language passed by the user. In LineuisCiX-Laneuaees, I assume that it is intended
to be the first language. It is important to pop the element out because the settings used
for the main language are different than the ones used for other languages.

1557 \clist_pop:NN \1_tmpa_clist \1_tmpa_tl

Since this t1 stores the language that is going to be the main one, I equate it to another
public t1 that I will be using later in language files.

1558 \tl_set_eq:NN \g_lngx_main_language_tl \1_tmpa_tl

65

In \1_tmpb_t1, I save the options that need to go with the language stored in \1_tmpa_t1.
The package used to have onchar option loaded conditionally with LuaATEX, but to
avoid potential clashes, now it has moved to the individual package files of languages. Now
I directly load the main option which makes the concerned language the ‘main’ language
of the document.

550 \tl_set:Ne \1_tmpb_tl {

1560 main,

To load the data from ini files, I use the import parameter.

1561 import

1562 }

I use the \babelprovide wrapper we saw earlier with the values of the first language.
1563 \1lngx_languages:VV \1_tmpb_tl \1_tmpa_tl

I scan if the package for this language is available. If it is, it is loaded.

1564 \file_if_exist:nTF { linguistix - \1l_tmpa_tl . sty } {

1565 \exp_args:Ne \RequirePackage

1566 { linguistix - \1l_tmpa_tl1l }

1567 Ao

If it is not, I issue the no_ldf warning message. It takes one argument that is the name
of the language. It is extracted using the V argument type.

1568 \msg_warning:nnV { linguistix-languages }
1560 { no_support }

570 \1_tmpa_tl

1571 }

The temporary tls are cleared.

1572 \tl_clear:N \1_tmpa_tl

1573 \tl_clear:N \1_tmpb_tl

I again check if the clist is empty. If it is, it means the user is typesetting a monolingual
document as they don’t need any other language than the ‘main’ one.

1574 \clist_if_empty:NF \1_tmpa_clist {

Now I have to repeat the same actions for all the pending languages. I do it with
\clist_map_inline:Nn.

1575 \clist_map_inline:Nn \1_tmpa_clist {

1576 \clist_pop:NN \1_tmpa_clist \1_tmpa_tl

1577 \tl_set:Ne \1_tmpb_tl { import }

1578 \1ngx_languages:VV \1_tmpb_tl \1_tmpa_tl
1570 \file_if exist:nTF {

1580 linguistix - \1_tmpa_tl . sty

1581 } Ao

1582 \exp_args:Ne \RequirePackage

1583 { linguistix - \1_tmpa_tl }
1584 } Ao

1585 \msg_warning:nnV { linguistix-languages }
1586 { no_1df }

1587 \1_tmpa_tl

1588 }

1589 \tl_clear:N \1_tmpa_tl

1590 \tl_clear:N \1_tmpb_tl

1501 }

1592 }

66

1593 }
1594 }
1595 }

06 (/lang)

(End of definition for languages. This function is documented on page 13.)

67

LineuisCiX-Loeos Documentation | IATEX 3-interface

w507 (*logos)
508 \ProvidesExplPackage{linguistix-logos}

1599 {2026-01-19}

1600 {v0.7}

1601 ¥

1602 Logos of the ‘LinguisTiX’ bundle.’
1603 }

The fontspec package (if not already loaded).

1605 \IfPackageLoadedF { fontspec } {
w06 \RequirePackage { fontspec }
607 F
\1lngx_logo_font: This is a command that switches to the New Computer Modern Uncial font family.

1608

w60 \newfontfamily \lngx_logo_font: [

w0 UprightFont = { NewCMUnciallO-Book.otf },

iz UprightFeatures =4

1612 SizeFeatures ={

1613 {

1614 Size = {-8},

1615 Font = {NewCMUncialO8-Book.otf}
1616 3,

1617 {

1618 Size = {8-},

1619 Font = {NewCMUnciallO-Book.otf}
1620 },

1621 }

622},

1623 BoldFont = { NewCMUnciall0-Bold.otf 1},
-4 BoldFeatures ={

1625 SizeFeatures ={

1626 {

1627 Size = {-8},

1628 Font = {NewCMUncialO8-Bold.otf}
1629 },

1630 {

1631 Size = {8-},

1632 Font = {NewCMUnciall0-Bold.otf}
1633 },

1634 }

1635 }

636]{ NewCMUnciall0-Book.otf }

(End of definition for \lngz_logo_font:. This function is documented on page 20.)

1ngx_purple_color The following defines the lngx_purple_color.

1637

w638 \color_set:nn { lngx_purple_color } { blue ! 50 ! red }

(End of definition for ingz_purple_color. This function is documented on page 20.)

68

\lngxlogo Here, I define the commands for printing various logos.

1639

620 \NewDocumentCommand \lngxlogo { 0{} } {%
w6 \group_begin:

52 \lngx_logo_font:

1643 LinguisTi

1644 \color_group_begin:

w45 \color_select:n { lngx_purple_color }
1646 X

1647 \color_group_end:
1648 \IfBlankF { #1 } { - #1 }
1649 \group_end:

1650 }

(End of definition for \lngzlogo. This function is documented on page 14.)

Since we need expandable commands, I use the non-protected function, \cs_new:Npn for
defining them.

1651

1652 \cs_new:Npn \lngxpkg {

1653 \IfPackageLoadedTF { hyperref } {

1654 \texorpdfstring {
1655 \1lngxlogo

1656 H{

1657 LinguisTiX

1658 }

1659 P {

1660 \1lngxlogo

1661 }

1662 }

Here, I define all the logos with a clist. The package names are stored in the clist and
then used at appropriate positions.

1663

w66, \clist_map_inline:nn {

1665 base,examples,fixpex,fonts,ipa,languages,logos,nfss,

1666 marathi,british,american,english,greek,malayalam,glossing,

66; leipzig

wes ¥ {

#1 is substituted with the package name. First, for the command-name itself, then as the
optional argument of \1ngxlogo and then in the PDF-string.

w60 \cs_new:cpn { lngx #1 logo } {

1670 \texorpdfstring {

1671 \lngxlogo [#1]

1672 Ao

1673 LinguisTiX - #1

1674 }

1675 }

1676 }

677 (/logos)

LINGU_IS'CIX-NFSS Documentation | IATEX 3-interface

1678 (*nfss)

69

\c_lngx_default_rmdefault_tl
\c_lngx_default_sfdefault_tl
\c_lngx_default_ttdefault_tl

\1_lngx_current_encoding_tl
\1_lngx_current_nmeta_family_tl
\1_1ngx_current_super_family_tl
\1_lngx_current_series_tl
\1_lngx_current_shape_tl

670 \ProvidesExplPackage{linguistix-nfss}
1680 {2026-01-19}

1681 {v0.7%}

1682 {%

1683 An extension to the core NFSS commands
1684 from the ‘LinguisTiX’ bundle.’

1685 }

I need a few temporary tls. I declare them here. As noted by the use of __, these are
package-internal t1s. Even though I don’t have any intention to change them, these are
better not touched by the users.

1686

68, \tl_new:N \1__lngx_normalfont_tmp_tl

wss \tl_new:N \1__lngx_selectfont_tmp_tl

680 \tl_new:N \1__lngx_family_tmp_tl

w600 \tl_new:N \1__lngx_nfss_tmp_tl

These t1s are required for saving some values that are accessed later by the package as
well as by the users.

1601

60> \tl_new:N \1_lngx_current_encoding_tl

1603 \tl_new:N \1_lngx_current_meta_family_tl

602 \tl_new:N \1_lngx_current_super_family_tl

1605 \tl_new:N \1_lngx_current_series_tl

606 \tl_new:N \1_lngx_current_shape_tl

Here, I start the begindocument/end hook. After the document has started, a lot of
initialisation can be assumed to have happened. I set some publicly available t1s here.
1697

1608 \hook_gput_code:nnn { begindocument / end } { . } {

600 \tl_const:Ne \c_lngx_default_rmdefault_tl { \rmdefault }

00 \tl_const:Ne \c_lngx_default_sfdefault_tl { \sfdefault }

or \tl_const:Ne \c_lngx_default_ttdefault_tl { \ttdefault }

(End of definition for \c_lngz_default_rmdefault_tl, \c_lngz_default_sfdefault_tl, and \c_lngz_-
default_ttdefault_tl. These functions are documented on page 20.)

First, I set the value default for the initial super font family.

0 \tl_set:Nn \1_lngx_current_super_family_tl { default }

The current encoding is saved in the relevant t1.

03 \tl_set:Ne \1_lngx_current_encoding tl {

1704 \encodingdefault

1705 }

When the package was first released, there was no public interface for guessing the current
meta family, but from 1tnews42, \@currentmetafamily became available. Thanks Frank
for pointing this out.

06 \tl_set:Ne \1_lngx_current_meta_family_tl {
707 \@currentmetafamily % new from ltnews42, thanks Frank!
1708}

Here, the series and shape tls are set to their defaults.

09 \tl_set:Nn \1_lngx_current_series_tl { md }
7o \tl_set:Nn \1_lngx_current_shape_tl { up }
o }

70

(End of definition for \1_lngz_current_encoding_tl and others. These functions are documented on page
20.)

The \selectfont command overrides the encoding. I trick the command by saving the
encoding that was active before \selectfont in a temporary t1.

-

713 \hook_gput_code:nnn { cmd / selectfont / before } { . } {

¢ \tl_set:Ne \1__lngx_selectfont_tmp_tl { \f@encoding }

1715 }

After the processing of \selectfont, I equate the temporary t1 with the one that the
package is tracking. This way, the effect of \selectfont remains unchanged, but we still
save the values that were there before using it. Only encoding needs this special setting.
Other attributes aren’t reset by \selectfont.

1716

7 \hook_gput_code:nnn { cmd / selectfont / after } { . } {

@5 \tl_set_eq:NN \1_lngx_current_encoding_tl

1719 \1__lngx_selectfont_tmp_tl

20 \tl_clear:N \1__lngx_selectfont_tmp_tl

1721 }

Now, after each \XXfamily commands, I save the family name in the respective t1 for
accessing later. All of these commands too reset the encoding. I repeat my trick for them
too.

723 \hook_gput_code:nnn { cmd / rmfamily / before } { . } {
124 \tl_set:Nn \1_lngx_current_meta_family_tl { rm }

25 \tl_set:Ne \1__lngx_family_tmp_tl { \f@encoding }

1726 }

1727

26 \hook_gput_code:nnn { cmd / rmfamily / after } { . } {
720 \tl_set:Nn \1_lngx_current_meta_family_tl { rm }

1730 \tl_set_eq:NN \1_lngx_current_encoding_tl

1731 \1__lngx_family_tmp_tl
732 \tl_clear:N \1__lngx_family_tmp_tl
1733 }

1734

735 \hook_gput_code:nnn { cmd / sffamily / before } { . } {
36 \tl_set:Nn \1_lngx_current_meta_family_tl { sf }

737 \tl_set:Ne \1__lngx_family_tmp_tl { \f@encoding }

1738 }

1739

720 \hook_gput_code:nnn { cmd / sffamily / after } { . } {
740 \tl_set:Nn \1_lngx_current_meta_family_tl { sf }

42 \tl_set_eq:NN \1_lngx_current_encoding_tl

1743 \1__lngx_family_tmp_tl
742 \tl_clear:N \1__lngx_family_tmp_tl
1745 }

747 \hook_gput_code:nnn { cmd / ttfamily / before } { . } {
48 \tl_set:Nn \1_lngx_current_meta_family_tl { tt }

20 \tl_set:Ne \1__lngx_family_tmp_tl { \f@encoding }

1750 }

5= \hook_gput_code:nnn { cmd / ttfamily / after } { . } {

71

753 \tl_set:Nn \1_lngx_current_meta_family_tl { tt }
ss \tl_set_eq:NN \1_lngx_current_encoding_tl

1755 \1__lngx_family_tmp_tl
756 \tl_clear:N \1__lngx_family_tmp_tl
1757 }

After the series commands, I save the series name in the t1. Note that, I don’t use the
traditional E'TEX labels m, bx etc. Using, md and bx is more intuitive, plus they also can
be used in the argument of \use:c directly.

1758

750 \hook_gput_code:nnn { cmd / mdseries / after } { . } {
760 \tl_set:Nn \1_lngx_current_series_tl { md }

w61 }

1762

765 \hook_gput_code:nnn { cmd / bfseries / after } { . } {
w65 \tl_set:Nn \1_lngx_current_series_tl { bf }

1765 }

For shape related commands too, I save the names that are more closer to their respective
commands.

1766

767 \hook_gput_code:nnn { cmd / upshape / after } { . } {
765 \tl_set:Nn \1_lngx_current_shape_tl { up }

1769 }

1770

7+ \hook_gput_code:nnn { cmd / itshape / after } { . } {
772 \tl_set:Nn \1_lngx_current_shape_tl { it }

1773 }

1774

775 \hook_gput_code:nnn { cmd / scshape / after } { . } {
776 \tl_set:Nn \1_lngx_current_shape_tl { sc }

w7 }

1778

770 \hook_gput_code:nnn { cmd / sscshape / after } { . } {
w80 \tl_set:Nn \1_lngx_current_shape_tl { ssc }

w8 }

783 \hook_gput_code:nnn { cmd / slshape / after } { . } {
w8, \tl_set:Nn \1_lngx_current_shape_tl { sl }
1785 }

787 \hook_gput_code:nnn { cmd / swshape / after } { . } {
wse \tl_set:Nn \1_lngx_current_shape_tl { sw }
780 F

70: \hook_gput_code:nnn { cmd / ulcshape / after } { . } {
92 \tl_set:Nn \1_lngx_current_shape_tl { ulc }

1793 }

\lngx_if_encoding p:n I provide a conditional for checking the current encoding with the given argument.
\lngx_if_encoding:nTF _ ,
795 \prg_new_conditional:Nnn \lngx_if_encoding:n {
1796 P,

797 T >

72

1798 F,

1799 TF

o0 + {

or \tl_if_eq:NnTF \1_lngx_current_encoding_t1 { #1 } {
1802 \prg_return_true:

wos + {

1804 \prg_return_false:

1805 }

1806 }

1807
(End of definition for \lngz_if_encoding:nTF. This function is documented on page 20.)

\IfEncodingTF For non-E‘TEX3 contexts, these simpler alternatives are provided.
\IfEncodingT .,
\IfEncodingF .5, \cs_new_eq:NN \IfEncodingTF \lngx_if_encoding:nTF

20 \cs_new_eq:NN \IfEncodingT \lngx_if_encoding:nT

sz \cs_new_eq:NN \IfEncodingF \lngx_if_encoding:nF

(End of definition for \IfEncodingTF, \IfEncodingT, and \IfEncodingF. These functions are documented
on page 16.)

\lngx_if_meta_family_p:n A conditional for checking the meta family with the given argument.
\lngx_if_meta_family:nTF

1812

13 \prg_new_conditional:Nnn \lngx_if_meta_family:n {

w1 P

1815 T,

1816 F,

1817 TF

s +o{

9 \tl_if_eq:NnTF \1_lngx_current_meta_family_tl { #1 } {
1820 \prg_return_true:
wer + o{

1822 \prg_return_false:
123}

824

(End of definition for \ingz_if_meta_family:nTF. This function is documented on page 20.)

\IfMetaFamilyTF User-facing conditionals for meta family.
\IfMetaFamilyT .,
\IfMetaFamilyF ..; \cs_new_eq:NN \IfMetaFamilyTF \lngx_if_meta_family:nTF
52, \cs_new_eq:NN \IfMetaFamilyT \lngx_if_meta_family:nT
526 \cs_new_eq:NN \IfMetaFamilyF \lngx_if_meta_family:nF

(End of definition for \IfMetaFamilyTF, \IfMetaFamilyT, and \IfMetaFamilyF. These functions are docu-
mented on page 16.)

\lngx_if_super_family_p:n A conditional for checking the super family with the given argument.
\1lngx_if_super_family:nTF

30 \prg_new_conditional:Nnn \lngx_if_super_family:n {

1831 P
1832 T,
1833 F,
1834 TF

73

w35 F {
36 \tl_if_eq:NnTF \1_lngx_current_super_family_tl { #1 } {

1837 \prg_return_true:
ws b o{

1839 \prg_return_false:
840 F

w4}

(End of definition for \lngz_if_super_family:nTF. This function is documented on page 20.)

\IfSuperFamilyTF User-facing conditionals for super family.
\IfSuperFamilyT

1842

\IfSuperFamilyF .,; \cs_new_eq:NN \IfSuperFamilyTF \lngx_if_super_family:nTF
224 \Cs_new_eq:NN \IfSuperFamilyT \lngx_if_super_family:nT
545 \Ccs_new_eq:NN \IfSuperFamilyF \lngx_if_super_family:nF

(End of definition for \IfSuperFamilyTF, \IfSuperFamilyT, and \IfSuperFamilyF. These functions are
documented on page I6.)

\lngx_if_series_p:n A conditional for checking the current series with the given argument.

\lngx_if_series:nTF

1547 \prg_new_conditional:Nnn \lngx_if_series:n {

1848 P,

1849 T,

1850 F,

1851 TF

1852 } {

55 \tl_if_eq:NnTF \1_lngx_current_series_tl { #1 } {
1854 \prg_return_true:
1855 } {

1856 \prg_return_false:
1857 }

1858 }

(End of definition for \lngz_if_series:nTF. This function is documented on page 20.)

\IfSeriesTF Its user-side macros.
\IfSeriesT
\IfSeriesF ., \cs_new_eq:NN \IfSeriesTF \lngx_if_series:nTF

:s6: \cs_new_eq:NN \IfSeriesT \lngx_if_series:nT
86 \cs_new_eq:NN \IfSeriesF \lngx_if_series:nF

1859

(End of definition for \IfSeriesTF, \IfSeriesT, and \IfSeriesF. These functions are documented on page
16.)

\lngx_if_shape_p:n A conditional for checking the current shape with the current argument.
\1lngx_if_shape:nTF

1863

86, \prg_new_conditional:Nnn \lngx_if_shape:n {

1865 P,

1866 T,

1867 F,

1868 TF

o ; {

w70 \tl_if_eq:NnTF \1_lngx_current_shape_tl { #1 } {
1871 \prg_return_true:

74

\IfShapeTF
\IfShapeT
\IfShapeF

\lngx_if _meta_family_rm_p:
\lngx_if_meta_family_rm:TF
\1ngx_if _meta_family_sf_p:
\1ngx_if_meta_family_sf:TF
\1lngx_if_meta_family_tt_p:
\1lngx_if _meta_family_tt:TF

\1lngx_if_series_md_p:
\1lngx_if_series_md:TF
\lngx_if_series_bf_p:
\lngx_if_series_bf:TIF

w2} A

1873 \prg_return_false:
1874 }

1875 }

(End of definition for \lngz_if_shape:nTF. This function is documented on page 20.)

User-side macros for the same.

1876

577 \cs_new_eq:NN \IfShapeTF \lngx_if_shape:nTF
w78 \cs_new_eq:NN \IfShapeT \lngx_if_shape:nT
1870 \cs_new_eq:NN \IfShapeF \lngx_if_shape:nF

(End of definition for \IfShapeTF, \IfShapeT, and \IfShapeF. These functions are documented on page 16.)
Now I will use the \clist_map_inline:nn technique for generating multiple condi-

tionals of the same pattern. For that, I need a cnn variant of \prg_new_conditional:Nnn

that I create with the following.

1880

ss: \CS_generate_variant:Nn \prg_new_conditional:Nnn { cnn }

These are separate conditionals for rm, sf and tt families. They don’t require arguments.
No user side commands are provided for these.
1882

885 \clist_map_inline:nn {

88, rm,

1885 sf,

1886 tt

JEET I |

sss \prg_new_conditional:cnn { lngx_if_meta_family_ #1 : } {
1889 p, T, F, TF

oo+ {

1801 \tl_if_eq:NnTF \1_lngx_current_meta_family_tl { #1 } {
1892 \prg_return_true:

1893 } {

1804 \prg_return_false:

1895 }

896 F

1897 }

(End of definition for \lngz_if meta_family_rm:TF, \lngz_if_meta_family_sf:TF, and \lngz_if_meta_-
family_tt:TF. These functions are documented on page 20.)
Separate conditionals for both the series.

1898

1890 \clist_map_inline:nn {

1900 md,

1901 bf

o2 F

105 \prg_new_conditional:cnn { lngx_if_series_ #1 : } {
1504 p, T, F, TF

wos F {

1906 \tl_if_eq:NnTF \1_lngx_current_series_tl { #1 } {
1907 \prg_return_true:

1908 o

75

1909 \prg_return_false:
1910 }

o}

tor2 F

(End of definition for \lngz_if_series_md:TF and \lngz_if_series_bf:TF. These functions are documented
on page 21.)

\lngx_if_shape_up_p: Separate conditionals for all the shapes.

\lngx_if_shape_up:TF .
\lngx_if_shape_it_p: .o \clist_map_inline:nn {
\lngx_if_shape_it:TF s up,
\1lngx_if_shape_sc_p: w6 1it,
\1lngx_if_shape_sc:TF w7 SC,

\lngx_if_shape_ssc_p: 9¢ SS8C,

\1lngx_if_shape_ssc:TF ™% sl,

\lngx_if_shape_sl_p: °° 5%
\1ngx_if_shape_sl:TF II:I) 1:{11c
\Ingx_if_shape_sw_p: 1923 \prg_new_conditional:cnn { lngx_if_shape_ #1 : } {
\1lngx_if_shape_sw:TF rom p, T, F, TF
\lngx_if_shape_ulc_p: ... } {
\lngx_if_shape_ulc:TF .. \tl_if_eq:NnTF \1_lngx_current_shape_tl { #1 } {
1927 \prg_return_true:
1928 A
1929 \prg_return_false:
1930 }
93r
1932 }

(End of definition for \lngz_if_shape_up:TF and others. These functions are documented on page 21.)

These keys are used in the argument of \1ngx_super_font_family:nn. This is why
they are separated from the set lngx_keys. We create new tls using these keys that
save the rm, sf and tt defaults of the new super font family. \1__lngx_nfss_tmp_t1 is
defined by the command that creates the super font family.

1933

1034 \clist_map_inline:nn {

1935 rm,

1936 sf,

1937 tt

1938 } {

1939 \keys_define:nn { lngx_nfss } {

1940 #1

041 .code:n = {

1942 \tl_gclear_new:c {

1943 g_lngx_ \1__Ingx_nfss_tmp_tl _ #1 default _tl
1944 }

1945 \tl_gset:cn {

1946 g_lngx_ \1__lngx_nfss_tmp_tl _ #1 default _tl
1047 F{ ##1}

1948 }

1949 }

1950 }

76

\1ngx_super_font_family:nn
\superfontfamily

\Ingx_soft_super_font_family:nn
\softsuperfontfamily

I first set the temporary t1 with the name of the super font family retrieved from the
first argument.

1951

1052 \CS_new_protected:Npn \lngx_super_font_family:nn #1#2 {

1953 \tl_set:Ne \1__lngx_nfss_tmp_tl { #1 }

Now, I pass the second argument to the key-set I just defined. The temporary tl is
cleared. This function comes with a user-side macro.

054 \keys_set:nn { Ilngx_nfss } { #2 }

055 \tl_clear:N \1__lngx_nfss_tmp_tl

1956 }

1957

058 \CS_gset_eq:NN \superfontfamily

1959 \1ngx_super_font_family:nn

(End of definition for \lngz_super_font_family:nn and \superfontfamily. These functions are documented
on page 21.)

I set the t1 that saves the current font family to the first argument.

1960

06: \CcS_new_protected:Npn \lngx_soft_super_font_family:nn #1#2 {

062 \tl_set:Ne \1_lngx_current_super_family_tl { #1 }

I first check if the t1s for rm, sf and tt are empty or not. Only if they are not, I use their
content in the respective \XXdefault. This makes the use of all the keys optional. Only
the keys that the user has used are processed here.

1965 \clist_map_inline:nn {

1064 rm,

1965 sf,

1966 tt

1967 AL

1968 \tl_if_empty:cF { g_lngx_ #1 _ ##1 default_tl } {
1960 \cs_set:cpe { ##1 default } {

1970 \tl_use:c { g_lngx_ #1 _ ##1 default _tl }
1971 }

1972 }

1973 }

After setting the \XXdefault, I use the \normalfont to initialise the super font family.

074 \normalfont

Now all the aspects are reset. But, we have them saved in our t1ls. So now depending on
the attributes that the user wants to retrieve, I call those attributes again. The second
argument is (expected to be) a comma-separated list of all such attributes. Thus, we
change the super font family, but retain the already active attributes. This command has
a user-facing macro.

1975 \clist_map_inline:nn { #2 } {

1976 \str_case:nn { ##1 } {

1977 { encoding } {

1978 \exp_args:NV \fontencoding

1979 \1_lngx_current_encoding_tl
1980 }

1981 { family } {

1082 \use:c {

1983 \1_lngx_current_meta_family_tl family

77

1984 }

1085 \exp_args:NV \fontencoding

1986 \1_lngx_current_encoding_tl
1087 \selectfont

1988 }

1989 { series } {

1600 \use:c {

1991 \1_lngx_current_series_tl series
1992 }

1993 }

1004 { shape } {

1995 \use:c {

1996 \1_lngx_current_shape_tl shape
1997 }

1998 }

1999 }

2000 }

2001 F

2003 \CS_gset_eq:NN \softsuperfontfamily
2004 \1lngx_soft_super_font_family:nn

(End of definition for \lngz_soft_super_font_family:nn and \softsuperfontfamily. These functions are
documented on page 2I.)

\Ingx_softer_super_font_family:n This function excludes the encoding and resets all the other attributes. It comes with a
\softersuperfontfamily user-side macro.
2006 \CS_new_protected:Npn \lngx_softer_super_font_family:n #1 {
2007 \lngx_soft_super_font_family:nn { #1 } {

2008 family,
2009 series,
2010 shape
2om

2012 }

2013
2oy \cs_gset_eq:NN \softersuperfontfamily
2015 \1lngx_softer_super_font_family:n

(End of definition for \lngz_softer_super_font_family:n and \softersuperfontfamily. These functions
are documented on page 21I.)

\Ingx_softest_super_font_family:n This function resets all the attributes. It is available as a user-side macro.
\softestsuperfontfamily

2016
zor7 \CS_new_protected:Npn \lngx_softest_super_font_family:n #1 {
zore \lngx_soft_super_font_family:nn { #1 } {

2019 encoding,
2020 famlly N
2021 series,
2022 shape

2023 }

2024 F

2026 \cS_gset_eq:NN \softestsuperfontfamily
2027 \1ngx_softest_super_font_family:n

78

\1lngx_soft_normal_font:n
\softnormalfont

\1lngx_softer_normal_font:
\softernormalfont

(End of definition for \lngz_softest_super_font_family:n and \softestsuperfontfamily. These functions
are documented on page 21I.)

Following the same logic, I now provide the command for resetting to the default super
family, but retaining the active attributes. I provide a user-side macro for this.

2028

202¢ \CS_new_protected:Npn \lngx_soft_normal_font:n #1 {

2030 \tl_set:Ne \1_lngx_current_super_family_tl { default }

205 \clist_map_inline:nn {

2032 rm,

2033 sf,

2034 tt

2035+ A

2036 \cs_set:cpe { ##1 default } {

2037 \tl_use:c { c_lngx_default_ ##1 default _tl }
2038 }

2039 }

2040 \normalfont
204 \clist_map_inline:nn { #1 } {

2042 \str_case:nn { ##1 } {

2003 { encoding } {

2044 \exp_args:NV \fontencoding

2045 \1_lngx_current_encoding_tl
2046 }

2047 { family } {

2048 \use:c {

2049 \1_lngx_current_meta_family_tl family
2050 }

2051 \exp_args:NV \fontencoding

2052 \1_lngx_current_encoding_tl
2053 \selectfont

2054 }

2055 { series } {

2056 \use:c {

2057 \1_lngx_current_series_tl series

2058 }

2059 }

2060 { shape } {

2061 \use:c {

2062 \1_lngx_current_shape_tl shape

2063 }

2064 }

2065 }

2066 }

2067 }

2068

2060 \CcS_gset_eq:NN \softnormalfont \lngx_soft_normal_font:n

(End of definition for \lngz_soft_normal_font:n and \softnormalfont. These functions are documented
on page 21.)

This is a parallel to the ‘softer’ super family command for the default super family.

2070

207: \Cs_new_protected:Npn \lngx_softer_normal_font: {

79

\1lngx_softest_normal_font:
\softestnormalfont

\CurrentEncoding
\CurrentMetaFamily
\CurrentSeries
\CurrentShape

2072 \lngx_soft_normal_font:n {

2073 family,
2074 series,
2075 shape
2076 }

2077 }

2078

2079 \Cs_gset_eq:NN \softernormalfont \lngx_softer_normal_font:

(End of definition for \lngz_softer_normal_font: and \softernormalfont. These functions are documented

on page 21.)

This is a parallel to the ‘softest’ super family command for the default super family.

2080

208 \CS_new_protected:Npn \lngx_softest_normal_font: {

202 \lngx_soft_normal_font:n {
2083 encoding,

2084 family,

2085 series,

2086 shape

2087}

2088 }

2089

2000 \CS_gset_eq:

NN \softestnormalfont \lngx_softest_normal_font:

(End of definition for \ingz_softest_normal_font: and \softestnormalfont. These functions are docu-

mented on page 21.)

Lastly, we create the commands that print the current values of the font attributes and

end the package.

200 \CS_new:Npn
2002 \tl_use:N
2003 }

2004 \CS_new:Npn
2005 \tl_use:N
2006

2007 \CS_new:Npn
2008 \tl_use:N
2009 }

200 \CS_new:Npn
aor \tl_use:N
2102 F

203 \CS_new:Npn
204 \tl_use:N
2105 }

206 (/nfss)

\CurrentEncoding {
\1_lngx_current_encoding_tl

\CurrentMetaFamily {
\1_lngx_current_meta_family_tl

\CurrentSuperFamily {
\1_lngx_current_super_family_tl

\CurrentSeries {
\1_lngx_current_series_tl

\CurrentShape {
\1_lngx_current_shape_tl

(End of definition for \CurrentEncoding and others. These functions are documented on page 16.)

References

Bringhurst, Robert (2004). The elements of typographic style. 4th ed. Point Roberts, WA:
Hartley & Marks, Publishers.

80

Munn, Alan and Enrico Gregorio (5th Dec. 2023). ExPex fails with unicode-math. How
to avoid the clash? URL: https://tex.stackexchange.com/q/703094 (visited on

21/12/2025).

81

https://tex.stackexchange.com/q/703094

	1 Introduction
	2 Planned
	3 Funding
	4 Acknowledgements
	5 LinguisTiX-base
	6 LinguisTiX-fixpex
	7 LinguisTiX-fonts
	8 LinguisTiX-glossing
	9 LinguisTiX-ipa
	10 LinguisTiX-languages
	11 LinguisTiX-logos
	12 LinguisTiX-nfss

