The fcolumn package*

Edgar Olthof
edgar <dot> olthof <at> inter <dot> nl <dot> net

Printed January 10, 2026

Abstract

In financial reports, text and currency amounts are regularly put in one table,
e.g., a year balance or a profit-and-loss overview. This package provides the
settings for automatically typesetting and checking such columns, including
the sum line (preceded by a rule of the correct width), using the specifier £.

1 Introduction

The package fcolumn provides the macros for an extra tabular specifier that makes
creating financial tables easy. The column specifier f itself is rather simple; it is
the predefined version of a generic column F. The generic version expects four
arguments: 1) grouping character of the integer part on output, 2) decimal mark
used on output, 3) compact additional information on input/output characteris-
tics, and 4) anything, but primarily used for providing formatting information, see
below.

The f-column in the current version of the package is defined for the conti-
nental European standard: \newcolumntype{f}{F.,{3,2}{}}. This means that
a number like 12345,67 will be typeset as 12.345,67. People in the Anglo-Saxon
world would rather code \newcolumntype{f}{F,.{3,2}{}} for the same input,
yielding 12,345.67 as output for the number given above. The default value for #3
is 3,2, indicating that grouping of the integer part is by three digits, that a comma
is used in the TEX-source to indicate the decimal mark, and that the decimal part
consists of two digits. However, if in your country or company grouping is done
with a thinspace every four digits, that the decimal mark in the source should be
the character p, and there are three digits after the decimal mark—that happens
to be a \cdot—, then simply specify \newcolumntype{f}{F\,\cdot{4p3}{}} in
that case. The input could be 123456p78 then, yielding 12 3456-780 as output.

By default two digits are used for the decimal part, so if you really want no
decimal digits (in that case of course also skipping the decimal mark) you have to
explicitly specify x,0 for some x. If you want no grouping character, specify 0,x.

As the fourth parameter you can insert anything just before the typesetting of
an amount in a column takes place. Its purpose is to add additional formatting
information, e.g., \color{blue} to have the contents of a column coloured blue,
but it can be misused, so use with care. And it can’t do all!

*This file has version number v1.4.3, last revised 2026,/01/10.

Table 1: Example Table.
Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00

bank account —603,23 mortgage 150.000,00

savings 28.000,00

cash 145,85 profit 27.542,62
227.542,62 227.542,62

This package requires and loads the array package [1]. To show where and how
the F-column is used, let’s look at some typical financial information as shown in
Table 1 and how this is entered in WTEX (Table 2). All the work was done by the

Table 2: Verbatim version of Example Table 1.

\begin{table} [htb]

\caption{Example Table.} \label{tab:fcraw}
\begin{tabular}{e{}1f1fe{}}

\multicolumn4{@{}c@{}}{\bfseries Balance sheet}\\

\toprule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\
\midrule

house & 200000 & equity capital & 50000 A\
bank account & -603,23 & mortgage & 150000 N\
savings & 28000 ARN
cash & 145,85 & profit & 27542,62 \\
\sumline

\bottomrule

\end{tabular}

\end{table}

column specifier f (for “finance”). In this case it constructs the \sumline, typesets
the numbers, calculates the totals, determines the widths of the sumrules, and
checks whether the two columns are in balance; if not, the user is warned via a
\PackageWarning. Of course for nice settings the booktabs package [2] was used,
but that is not the point here.

This package is heavily inspired by the dcolumn package by David Carlisle [3];
some constructions are more or less copied from that package. From version 1.3
onwards it incorporates the idea of Christian Hoff of providing additional (for-
matting) information per column. A rather contrived example is given in Table 3,
combining colour and fonts. How this is entered in I#TEX is shown in Table 4. The

Table 3: Example Table with column formatting.
Balance sheet

properties 31 dec 2014 debts 31 dec 2014

house 200.000,00 equity capital 50.000,00

bank account —603,23 mortgage 150.000,00

savings 28.000,00

cash 14585 profit 27.542,62
227.542.62 227.542.62

font changing commands like \mathsf and \mathbf act on an argument, hence
require braces, but these are already provided internally for this purpose. For that
reason this type of commands must be given last, without braces (and if you don’t
specify a font changing command, these extra internal braces are just redundant).
The fourth argument to the new columntype may consist of two parts, separated

Table 4: Almost verbatim version of Example Table 3.

\newcolumntype{q} [1]{F.,{3,2}{#1}}

\begin{table} [htb]

\caption{Example Table with column formatting.} \label{tab:fcformat}
\begin{tabular}{@{}1g{\color{blue}\mathsf, \mathbf}1q{\color{magenta}}@{}}
\multicolumn4{@{}c@{}}{\bfseries Balance sheet}\\

(Same financial contents as in Table 1.)

\end{tabular}
\end{table}

by a comma. In that case, the part to the left of the comma is applied to the data
entered by the user and the right part, if non-empty, is the replacement formatting
for the result. The example in Table 3 shows this: the bold font is only used in
the \sumline and there is no colour specification, so that’s back to the default
(black). If you want formatting for the whole column, like magenta in the case of
the last column of Table 3, leave out the comma. Font size changes, e.g., “\huge”
in “\huge\mathbf” as parameter to column type q are ignored by ITEX, since
the formatting information is used in math environment, which has its own way
of handling this. This isn’t bad, as size changes in one column, without overall
changes to the table look terrible. If you want something huge, make a \huge
table.

As will be demonstrated by Table 5 in the next page break, the package
fcolumn now also works with longtable [4], irrespective of the order in which
these packages are loaded. The raw formatting of the multipage table is shown in
Table 6. While constructing this example with tagging, see section 3, it turned out
that booktabs caused problems that were solved by including option firstaid.
For more information on how to handle \endhead and its ilk, see the documenta-
tion of longtable [4]. Not shown here are the new fcolumn formatting possibilities
(like new fonts and/or colours), but it has been checked they do work in combi-
nation with longtable. The packages supertabular [5] and fcolumn also work
happily together, so you can choose which package you want if you need this.
There is no race condition with supertabular either.

Table 5: Table showing compatibility of fcolumn and longtable.
Balance sheet

properties 31 dec 2014 debts 31 dec 2014
house 200.000,00 equity capital 50.000,00
bank account —603,23 mortgage 150.000,00
savings 1 5.600,00
savings 2 5.600,00
savings 3 5.600,00

(Table continues on next page)

Table 5: (continued from previous page)

properties 31 dec 2014 debts 31 dec 2014

savings 4 5.600,00

savings b 5.600,00

cash 145,85 profit 27.542,62
227.542,62 227.542,62

Table 6: Almost verbatim version of Example Table 5.

\begin{longtable} [1]{@{}1f1f0{}}

\caption{Table showing compatibility of fcolumn and
longtable.\label{tab:fclong}}\\

\multicolumn4{@{}c@{}}{\bfseries Balance sheet}\\

\toprule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\

\midrule

\endfirsthead

\caption[]{\textit{(continued from previous page)\/}}\\

\toprule

properties & \leeg{31 dec 2014} & debts & \leeg{31 dec 2014}\\

\midrule

\endhead

\bottomrule

\multicolumn4{@{}r@{}}{\small\textit{(Table continues on
next page)\/}F\\

\endfoot

\bottomrule

\endlastfoot

house & 200000 & equity capital & 50000 N\

(Somewhat altered financial contents compared to
Table 1 to demonstrate the page break.)

\sumline
\end{longtable}

Unlike in the package dcolumn [3], the alignment on the decimal mark in
fcolumn is achieved by right aligning numbers that all have the same number
of digits to the right of this mark, in combination with the fact that all decimal
glyphs have the same width*. This width is font specific, so changing fonts within
a column may ruin the alignment, see, e.g., the first F-column in Table 3.

2 Commands

The user only needs to know five commands and two options; these are given here.

In the tabular the column specifier F can be given with arguments, or the prede-
fined version f, where the four arguments of F are ., ,, {3,2}, and {}. If you want

* The so-called tabular numerals. If the font you use has proportional numerals, the alignment
won’t work in general.

\sumline

\resetsumline

\leeg

\checkfcolumns

g to be your own definition like the curious one given in Section 1, then specify
\newcolumntype{g}t{F\,\cdot{4p3}{}} prior to using g in a tabular.

Entries in an F-column are, from that moment on, treated as numbers unless
explicitly escaped by \leeg, see below. The numbers are typeset according to the
template the user gives with his/her F-column. The “middle” character of #3 is
an important switch: it does more than just setting the input decimal mark. By
default the input grouping character is the dot, except when the dot is specified as
input decimal mark; in that case the comma is acting as input grouping character.
With this convention continental Europe and the Anglo-Saxon part of the world
are served. This is hard coded, but using input grouping characters is optional
anyway.

The numbers in an F-column are typeset as a financial amount, but the real benefit

comes with the \sumline. It does three things:

1) It calculates and shows the total of the column so far and the maximum width
encountered so far, including the width of the total;

2) Tt generates a rule with width calculated in the first item;

3) It checks the columns that are supposed to balance whether or not they actu-
ally do. If so, nothing happens. Otherwise a \PackageWarning is given that
column ¢ and j do not balance, where 7 and j are the relevant columns. This is
only done automatically if the total number of F-columns is even, e.g., if there
are six F-columns, then 1 is checked against 4, 2 against 5, and 3 against 6. If
the number of F-columns is odd then anything could be possible in that table
and nothing is assumed about structure within the table. This behaviour can
be overridden, see below.

By default the vertical separation between the rule and the total is 2pt,
but this can be changed by the optional argument to \sumline. Give, e.g.,
\sumline[10pt], in case you want this spacing to be 10pt. And you may even
give two options, like in \sumline [10pt] [5pt], in which the second option is the
extra space below the summary row. In fact that second option is parsed to \\,
that is implicit in \sumline.

Suppose you want to typeset one tabular with the profit-and-loss of many projects
individually. In case the layout of those tabulars is similar it were nice if all columns
were aligned. This can be done by making it one big tabular with a fresh start for
each project. The macro \resetsumline is used for that: it resets all totals and
all column widths, see for example Table 7. Note that the rules in the first and
third F-columns of Project 1 cover 1.200,00 whereas in Project 2 those rules are
narrower since they only cover 430,00; still the columns are aligned (similar story
for F-columns two and four). The verbatim way of setting up Table 7 is given in
Table 8.

If an F-column should be empty then simply leave it empty. If, however, it is not
empty but the entry should be treated as text—even if it is a number—, this can
be done with \leeg. It expects an argument and this argument is typeset in the
column. The common case is where p.m. (pro memoria) is entered or in column
headers.

The automatic column balance check can also be done manually. If F-columns 1
and 4 should balance and you want them to be checked, then simply say
\checkfcolumnsi14. With more than nine F-columns you may be forced to say

\ifstrict@ccounting
\ifminusr@d

Table 7: Example: multiple projects.

Project 1
expense actual budget income actual budget
food 450,20 500,00 tickets 1.200,00 1.000,00
drinks 547,50 400,00
music 180,00 100,00
profit 22,30
1.200,00 1.000,00 1.200,00 1.000,00
Project 2
expense actual budget income actual budget
food 250,00 300,00 tickets 400,00 450,00
drinks 100,00 80,00
music 80,00 70,00 loss 30,00
430,00 450,00 430,00 450,00

something like \checkfcolumns{10}{12}. If \checkfcolumns is used, the auto-
matic check is disabled. Multiple \checkfcolumnss are supported; if F-columns 1,
and \checkfcolumns23.
There is no explicit command to disable all checking, but \checkfcolumnsii ob-

2, and 3 should balance, you specify \checkfcolumns12

viously does the trick, at the expense of some trivial calculations.

In the rare occasion that a negative number occurs in a financial table, the sign
—’ or the number is coloured

of that number can be an explicit minus sign, i.e., *

Table 8: Verbatim version of Table 7.
\begin{table} [htb]

\caption{Example: multiple projects.} \label{tab:fcmult}

\begin{tabular}{e{}1ff1ffe{}}
\multicolumn6{@{}c@{}}{\bfseries Project™1}\\
\toprule

expense & \leeg{actuall}l & \leeg{budget} &
income & \leeg{actual} & \leeg{budget} \\
\midrule

food & 450,20 & 500 & tickets & 1200 & 1000
drinks & 547,5 & 400

music & 180 & 100

profit & 22,3

\sumline [2pt] [10pt]

\resetsumline
\multicolumn6{@{}c@{}}{\bfseries Project™2}\\
\toprule

expense & \leeg{actuall} & \leeg{budget} &
income & \leegf{actuall} & \leeg{budget} \\
\midrule

food & 250 & 300 & tickets & 400 & 450
drinks & 100 & 80

music & 80 & 70 & loss & 30
\sumline

\bottomrule

\end{tabular}

\end{table}

\\
\\
\\
\\

N\
N\
\\

option red
option strict

red, or it is typeset between parentheses, and there may be even other ways.
By default (for aesthetic reasons) fcolumn typesets it with a minus sign, but
strict accounting prescribes that the number should be put between parenthe-
ses. The latter can be accomplished by setting \strict@ccountingtrue, but
since this contains a non-letter, it is more I¥TEX-like to invoke fcolumn with
the option strict, i.e., \usepackage[strict]{fcolumn}, which sets this flag.
If you want the negative numbers to be coloured red, use the option red, i.e.,
\usepackage [red] {fcolumn}, but note that strict and red are mutually exclu-
sive: if both are used, red is reset because strict is strict.

3 Tagging

Additional code for making tagged PDF [6] is available by generating the style
file with option “tagging”. If you don’t want this or if your TgX-distribution
doesn’t support tagging (yet), it is possible to exclude these lines. This is
still highly experimental, and to properly process the document you are read-
ing now (that has tagging switched on), the line with \DocumentMetadata needs
testphase={phase-II,table,firstaid,caption} as options. The aptly named
option firstaid is needed for booktabs to behave correctly in the longtable en-
vironment. Setting testphase=latest—which, among others, sets phase-III—
includes all and sets math-tagging; it’s fine to use it in your documents, but doesn’t
work well with 1txdoc, that is used to produce the document you are now read-
ing. In this version the math-tagging is switched off again in the F-columns of a
tabular environment, since the math there is fake math.

4 The macros

Here follows the actual code; most users will stop reading here, but some examples
that may be interesting are presented below. Previous versions can be loaded for
not-up-to-date systems.

1 \DeclareRelease{v1.4.2}{2023-07-25}{fcolumn-2023-07-25.sty}

2 \DeclareCurrentRelease{}{2026-01-04}

3 \NeedsTeXFormat{LaTeX2e} [2024/06/01]

4.1 Options

There are two options. If red is set, negative numbers are displayed in red. If
strict is set, strict accounting rules are used in display and this overrules a
possibly set red. Depending on the two booleans associated with these options
the color package [7] will be loaded or not.

4 \newif\ifminusr@d \minusr@dfalse

5 \newif\ifstrict@ccounting \strict@ccountingfalse

6 \DeclareOption{red}{\minusr@dtrue}

7 \DeclareOption{strict}{\strict@ccountingtrue}

8 \ProcessOptions \ifminusr@d \ifstrict@ccounting \minusr@dfalse
9 \PackageWarningNoLine{fcolumn}{Option ‘red’ is reset due to use
10 of ‘strict’}\else\usepackage{color}\fi\fi

column F
column f

\FCsc@l
\FCtce@l

\geldm@cro

\g@ldm@cro

4.2 Definitions

The column specifier F is the generic one, and £ is the default (continental Euro-
pean) one for easy use. Note that the definition of the column type £ does not use
private macros (no @), so overriding its definition is easy for a user.

11 \newcolumntype{F} [4]{>{\befi{#1}{#2}{#3}{#4}}r<{\e@fi}}
12 \newcolumntype{f}{F.,{3,2}{}}

Two (count)s are defined, that both start at zero: the (count) \FCsc@l, that keeps
track at which F-column the tabular is working on and the (count) \FCtc@l, that
records the number of F-columns that were encountered so far in the document.
Later in the package the code can be found for generating a new (count) and a new
(dimen) if the number of requested F-columns is larger than currently available.
This is of course the case when an F-column is used for the first time.

13 \newcount\FCsc@l \FCsc@l=0 \newcount\FCtc@l \FCtc@l=0

The macro \geldm@cro takes a number and by default interprets this as an
amount expressed in cents (dollar cents, euro cents, centen, Pfennige, centimes,
kopecks, groszy) and typesets it as the amount in entire currency units (dollars,
euros, guldens, Marke, francs, rubles, zloty) with comma as decimal mark and
the dot as grouping character (thousand separator if the first part of #1 is 3).
As explained, this can be changed. It uses three private booleans: \ifwiths@p,
\ifstrict@ccounting, and \ifminusr@d. The latter two are used to typeset
negative numbers in a special way. By default it doesn’t do this: a minus sign is
used.

14 \newif\ifwiths@p
Actually \geldm@cro is only a wrapper around \g@ldm@cro.

15 \def\geldm@cro#1#2{\withs@pfalse
16 \afterassignment\g@ldm@cro\count@#1\relax{#2}}

After setting the environment for formatting, this macro starts by looking at the
sign of #2: if it is negative, it prints the correct indicator (a parenthesis, a minus
sign, or nothing at all in case of red), assigns the absolute value of #2 to \count2
and goes on. Note that \geldm@cro and therefore \g@ldm@cro are always used
within $s, so it is really a minus sign that is printed, not a hyphen. All calculations
are done with \countO, \countl, etc., i.e., without F-column-specific {count)s
because it is all done locally. Leaving the tabular environment will restore their
values. This is also true for the effect of \FCform@t, so that formatting information
is local to this column. The reason for inserting the { between \FCform@t and
\ifnum (and the accompanying } just before finishing this definition) is to facilitate
the possible use of \mathbf or any other font changing command as the last item
in \FCform@t.

When \FCform@t includes a colour change, this is overruled for negative num-
bers when option red is set. For that reason it is unwise to use a red colour for the
whole column in combination with the option red: sign information is obscured
then.

17 \def\g@ldm@cro#i\relax#2{\ifstrict@ccounting\def \bm@nus{ (}

18 \def\em@nus{) }\else\def\em@nus{}\ifminusr@d\def\bm@nus{\color{red}}
19 \else\def\bm@nus{-}\fi\fi\FCform@t{\ifnum#2<0 \bm@nus\count2=-#2

20 \else\count2=#2 \fi

\g@ldens

Calculate the entire currency units: this is the result of z/a as integer division,
with @ = 10™ and n the part of #1 after the separator (if any). Here the first
character of #1 is discarded, so the separator in #1 is not strict: you could also
specify 3.2 instead of 3,2 (or even 3p2).

21 \count4=\ifx\relax#1\relax 2 \else\@gobble#l\relax\fi

22 \count3=0

23 \loop\ifnum\count3<\count4

24 \divide\count2 by 10 \advance\count3 by \@ne

25 \repeat

Note that \count3 now equals \count4: this going up-and-down will be used

more often, it saves several assignments. The value in \count?2 is then output by
\g@ldens using the separation given (and stored in \count@).

26 \g@ldens{\the\count@}/,
If there is a decimal part. ..
27 \ifnum\count3>0 {\decim@lmark}

Next the decimal part is dealt with. Now x mod a is calculated in the usual way:
x — (x/a) * a with integer division. The minus sign necessary for this calculation
is introduced in the next line by changing the comparison from < to >.

28 \ifnum#2>0 \count2=-#2\else\count2=#2 \fi

29 \loop\ifnum\count3>0

30 \divide\count2 by 10 \advance\count3 by \m@ne

31 \repeat

The value of \count3 is now 0, so counting up again.

32 \loop\ifnum\count3<\count4

33 \multiply\count2 by 10 \advance\count3 by \G@ne
34 \repeat

35 \ifnum#2>0 \advance\count2 by #2

36 \else \advance\count2 by -#2

37 \fi
38 \zerop@d{\number\count3}{\number\count2}y,
39 \fi

If the negative number is indicated by putting it between parentheses, then the
closing parenthesis should stick out of the column, otherwise the alignment of
this entry in the column is wrong. This is done by an \rlap and therefore does
not influence the column width. For the rightmost column this means that this
parenthesis may even stick out of the table. I don’t like this, therefore I chose to
put \strict@ccountingfalse. Change if you like, by setting the option strict.
If overflow was detected, an exclamation mark is output to the right of the
value that caused this. This of course ruins the appearance of the table, but in
this case that serves a clear goal: there’s something wrong and you should know.
40 \ifx\FCs@gn\m@ne\ifnum#2<0 \rlap{\em@nus~!>}
41 \else\rlap{~!}\fi
42 \else\ifnum#2<0 \rlap{\em@nus}\fi\fi}}

Here the whole currency units are dealt with. The macro \g@ldens is used recur-
sively, therefore the double braces; this allows to use \countO locally. This also
implies that tail recursion is not possible here, but that is not very important, as
the largest number (which is 23! —1) will only cause a threefold recursion using the
default 3,2 (ninefold when using 1,0, but who does that?). The largest amount

\du@zendprint

\zerop@d

\zetg@ld

this package can deal with is therefore 2.147.483.647 (using 3,0). For most people
this is probably more than enough if the currency is euros or dollars. And other-
wise clearly state that you use a currency unit of k€ (or even M€ for the very
rich).
There is no obvious interpretation of #1 being zero or negative, therefore this
is used as an indicator that no grouping character should be used.
43 \def\g@ldens#1{{\count3=\count2 \countO=#1
First divide by 10", where n is #1.
44 \ifnum\count0<1 \count0=3 \fi
45 \1oop \ifnum\count0>0 \divide\count2 by 10 \advance\countO by \m@ne
46 \repeat
Here is the recursive part,
47 \ifnum\count2>0 \g@ldens{#1}\fi
and then reconstruct the rest of the number.
48 \countO0=#1
49 \ifnum\count0<1 \count0=3 \fi
50 \loop \ifnum\count0>0 \multiply\count2 by 10 \advance\countO by \m@ne
51 \repeat
52 \count2=-\count2
53 \advance\count2 by \count3 \du@zendprint{#1}}}

The macro \du@zendprint takes care of correctly printing the separator and pos-
sible trailing zeros. The former, however, is only done if #1 is larger than zero.
54 \def\du@zendprint#1{\ifwiths@p\ifnum#1>0 {\sep@rator}\fi

55 \zerop@d{#1}{\number\count2},

56 \else\zerop@dl{\number\count2}\fi\global\withs@ptrue}

The macro \zerop@d uses at least #1 digits for printing the number #2, padding
with zeros when necessary. Note: #1 being zero or negative is a flag that it should
be interpreted as 3. A bit ugly, but it works, since the related code knows about
this.

It is done within an extra pair of braces, so that \count0 and \count1 can be
used without disturbing their values in other macros.
57 \def\zerop@d#1#2{{\count0=1 \count1=#2

First determine the number of digits of #2 (expressed in the decimal system). This
number is in \countO and is at least 1.

58 \loop \divide \countl by 10 \ifnum\count1>0 \advance\countO by \@ne

59 \repeat

If #1 is positive, the number of zeros to be padded is the maximum of 0 and
#1-\countO (the latter can be negative), so a simple loop suffices. If it is zero or
negative, this is a signal that it should be interpreted as 3 (and no separator will
be output).

60 \ifnum#1>0 \loop\ifnum\countO<#1i\relax O\advance\countO by \@ne

61 \repeat\else\advance\countO by -3

62 \loop\ifnum\count0<0 O\advance\countO by \@ne \repeat
63 \fi\number#2}}

This macro takes care of several things: it increases the subtotal for a given F-
column, it checks whether or not that subtotal has overflown, it records the largest
width of the entries in that column and it typesets #1 via \geldm@cro.

10

64 \def\zetg@ld#1#2{\countO=#2\relax \let\FCs@gn=\@ne

First it checks whether there is a risk of overflow in this step. If A and B are
two TgX-registers and B is to be added to A, overflow cannot occur if 1) one
is (or both are) zero or 2) if A and B have different signs; otherwise be careful.
Note that TEX does not check for overflow when performing an \advance (done
in section 1238 of Ref. [8]), in contrast to \multiply, see section 105.

65 \ifnum\count0<0 \ifnum\csname FCtot@\romannumeral\FCsc@l\endcsname<0

66 \let\FCs@gn=\m@ne \fi\fi

67 \ifnum\count0>0 \ifnum\csname FCtot@\romannumeral\FCsc@l\endcsname>0

68 \let\FCsOgn=\m@ne \fi\fi

69 \globalladvance\csname FCtot@\romannumeral\FCsc@l\endcsname by \countO
70 \ifx\FCs@gn\m@ne

They have the same sign, hence risk of overflow. Record the sign of \count0 (and
of the original total of this column; we just established they were the same) in
\FCs@gn. Table 9 shows what can go wrong if the numbers are too large: in the

Table 9: Examples on overflow.
Projects

income 31 dec 2014 31 dec 2015 31 dec 2016

item 1 20.000.000,00 20.000.000,00 20.000.000,00
item 2 10.000.000,00 ! 2.000.000,00 ! —1.500.000,00
item 3 5.000.000,00 —1.500.000,00 ! 2.000.000,00

—17.949.672,96 20.500.000,00 20.500.000,00

left F-column the sumline is incorrect and the number that caused the overflow is
indicated by an exclamation mark. In the middle F-column, overflow occurs twice
and because this is once positive, once negative here, cancellation of errors occurs
and the sumline is correct in the end. Nevertheless, it is advised to swap the two
items that caused the overflow, as shown in the right F-column.
Check that the sign of the updated column total is still correct. If so, \FCs@gn

is reset (to \@ne) at the end of this chunk.

71 \ifnum\count0>0 \let\FCs@gn\G@ne \fi

72 \countO=\csname FCtot@\romannumeral\FCsc@l\endcsname

73 \ifnum\FCs@gn<0 \countO=-\countO \fi

74 \ifnum\count0<0

75 \let\FCs@gn=\m@ne

76 \PackageError{fcolumn}{Register overflow}{Overflow occurred in
77 fcolumn \number\FCsc@l\space near or at line \the\inputlineno.
78 You can press\MessageBreak <enter> now and I’1l proceed, but

79 check your table. The offending entry\MessageBreak is indicated
80 with an exclamation mark in the output.}’

81 \else\let\FCs@gn=\C@ne

82 \fi

83 \fi

The value of \FCs@gn is used in \geldm@cro below.

84 \setboxO=\hbox{$\geldm@cro{#1}{#2}$}%

85 \ifdim\wd0>\csname FCwd@\romannumeral\FCsc@l\endcsname
86 \globallcsname FCwd@\romannumeral\FCsc@l\endcsname=\wd0
87 \fi\unhboxO}

11

\m@thcodeswitch

\befi

The (count)s \FC@L and \FC@r capture the parts to the left and to the right
of the decimal mark, respectively.

88 \newcount\FC@1 \newcount\FC@r
Some auxiliary definitions for capturing compacted information.

89 \def\setucc@de#1#2\relax{\uccode‘\"=‘#1 }
90 \def\assignform@t#1,#2,#3\assignform@t{\def\FCform@t{#1}/,
91 \def\FCform@tt{#2}\ifx\FCform@tt\Qempty \def\FCform@tt{#1}\fi}

As will be shown below, once the first digit, or sign, or decimal mark, or grouping
character is scanned, the decimal digits should loose their activeness. That is
done here for the digits in a rather blunt way, by putting their \mathcodes to
zero if #1 equals 0, since the actual \mathcode is not important—as long as it
is not "8000—because the digits are not used for typesetting. (And even if they
were; it’s inside \box0, whose contents will be discarded.) When the $ in \e@fi
is encountered, the digits get back their original \mathcodes so that the actual
typesetting in \zetg@ld is correct again. With a non-zero #1 the activeness is
switched on.

92 \def\m@thcodeswitch#1{\count0=10 \loop\ifnum\count0>0

93 \advance\count0 by \m@ne\mathcode\expandafter‘\the\countO=

94 \ifnum#1=0 0 \else "8000 \fi\repeat}

The macro \b@f1i provides the beginning of the financial column. It will be inserted
in the column to capture the number entered by the user. The separator and
decimal mark are within a math environment, so you can indeed specify \, instead
of \thinspace, but there are extra braces around them in the code where they
are used, so it doesn’t affect the spacing between the digits (trick copied from
dcolumn, Ref. [3]).

95 \def\bOfi#1#2#3#4{\sep0xt#1\sep0xt\def\decim@lmark{#2}\def\spel{#3}

96 \assignform@t#4,,\assignform@t\globalladvance\FCsc@l by \@ne

97 \global\FC@1=0 \global\FC@r=1

The next statement is missing in \Qarray (see section 4.5) for good reasons; it
indicates to the tagging engine that what follows is fake math, not to be tagged.
But for fcolumn that’s exactly what’s going on, so include it here, but only in
columns with specifier F, i.e., in the current macro.

98 (xtagging)

99 \m@th

100 (/tagging)

The value specified by the user is then captured by \FC@l and this is done in a
special way: \FC@L is assigned globally within \box0. Why? To use it as scribbling
paper to examine what the user entered, without dumping it into the horizontal
list.

There are four parts to an F-column entry, all parts optional, making 16 com-
binations. The sequence is (in the Backus—Naur notation of Ref. [9]): (sign)
(integer constant) (decimal mark) (integer constant). Here (sign) is a plus or mi-
nus character with category code 12, (integer constant) is a sequence of zero or
more (decimal) (digit)s, and (decimal mark) is the middel part of #3, i.e., the
comma in 3,2 or the period in 3.2. If the (decimal mark) is absent with no space
characters between the two (integer constant) terms, these merge, making four
redundant entries. One of the combinations is (empty), a sequence of characters

12

outside the ones that are made active, e.g., plain text or nothing at all: this is the
only combination that doesn’t put anything in an F-column—and was the most
difficult part to handle.

The minus sign must be captured separately, because in an entry like -0,07
the 7 cents are negative, but this cannot be seen from the part to the left of the
decimal mark, since —0 is 0 in TEX (in fact in most computer languages, but not
in MIX [10]), so \ifnum-0<0 yields false. \FCs@gn is a general purpose flag. Its
first use is to capture the sign.

101 \let\FCs@gn=\@ne\relax \setboxO\hbox\bgroup$

Do the scan inside a box and inside math mode. Start with defining all characters
that may appear as the first one in an F-column as active; digits first. This needs
a complicated \edef with accompanying \noexpand because the starting digit for
\FC@1 must be packed inside each definition.

102 \count@=10 \loop\ifnum\count@>0 \advance\count@ by \m@ne

103 \uccode‘\“=\expandafter‘\the\count@ \uppercase{\edef~}{\noexpand

104 \m@thcodeswitchO \global\FC@l=\the\count@}\repeat

For the input decimal mark something extra is needed: if it is the first character
in an F-column (like in ,07), it should also restore the \mathcodes of the digits.
Checking whether or not it is the first is easy, since in that case the \mathcodes
of the decimal digits are still "8000. The assignment to \FC@r starts with 1 (with
no space following), so that appended digits get captured correctly, even if they
start with 0; postprocessing of \FC@r is done in \e@fi. The input decimal mark
switches itself off as active character, so at most one input decimal mark is allowed
(N.B.: this makes sense).

105 \afterassignment\setucc@de\count@#3\relax

106 \uppercase{\def " }{\ifnum\mathcode‘\0="8000 \m@thcodeswitchO \fi

107 \afterassignment\deactdecm@rk\count@#3\relax \global\FC@r=1}

The input grouping character effectively expands to “nothing, i.e., ignore” in a
complicated way: it ignores the character and resumes scanning the number. The
test prior to that action is needed if the grouping character is the first character
encountered in the F-column. Which part to continue with depends on whether
or not an input decimal mark was encountered; that can be checked by looking at
its \mathcode.

The input grouping character is the dot “.”; except when that character was
already chosen as input decimal mark. In that case, the grouping character will
be the comma. This is easy to check because the \uccode of ‘\~ is still preserved.
108 \ifnum\uccode‘\~=¢. \uccode‘\"=‘,\relax\else \uccode‘\"=¢.\relax\fi
109 \uppercase{\def~}{\ifnum\mathcode‘\0="8000 \m@thcodeswitchO \fi
110 \afterassignment\d@cm\count@#3\relax

The \expandafter below is necessary because the global assignment should act
after the \fi.

111 \ifnum\count@=\mathcode‘- \expandafter\global\FC@l=\the\FC@l

112 \else \expandafter\global\FC@r=\the\FCOr\fil}J,

The signs are relatively simple: record the sign, restore \mathcodes if needed (it
should be: a minus sign between digits screws up everything), and start scanning
the number.

113 \uccode‘\"=‘+\relax \uppercase{\def~}{\ifnum\mathcode ‘\0="8000
114 \m@thcodeswitchO \fi\global\FC@1=0}

13

\sep@xt
\actdecm@rk
\deactdecm@rk
\d@cm

\e@fi

115 \uccode‘\"=‘-\relax \uppercase{\def~}{\ifnum\mathcode ‘\0="8000
116 \m@thcodeswitchO \fi\global\let\FCs@gn\m@ne \global\FC@1=0}
Now actually activate all these codes.

117 \mathcode‘-="8000 \mathcode‘+="8000 \mathcode‘.="8000

These three remain active until the $ in \e@fi is encountered. The following ones
will, except in the (empty) case, have their activeness turned off at some time.

118 \m@thcodeswitchl \afterassignment\actdecm@rk\count@#3\relax}

Again a few small macros to do important work. At first \sep@xt to extract
the first character of #1, which in most cases will be the only character. Then
\actdecm@rk and \deactdecm@rk to activate and deactive respectively the deci-
mal mark. Finally, \d@cm captures a \mathcode for further investigation.

119 \def\sepOxt#1#2\sepCxt{\def\sepOrator{#1}}

120 \def\actdecm@rk#1#2\relax{\ifx#1.\relax \mathcode‘,="8000

121 \else \mathcode‘#1="8000 \fi}

122 \def\deactdecm@rk#1#2\relax{\mathcode ‘#1=0 1}/,

123 \def\d@cm#1#2{\count@=\mathcode‘#1 }

If the digits are still active then either nothing, or only characters that did not
deactivate the digits were entered. In both cases the output should be (empty).
To flag this situation outside the group that started with the opening $ of \b@fi,
\FC@r is set globally to a negative value. This doesn’t harm, because it didn’t
contain relevant information anyway. Outside the group, the sign of \FC@r can be
tested then. This is a slight misuse of this \count, but now it’s documented. In
effect, \FC@r can only be —1, 1, or at least 10, so the comparison \ifnum\FC@r>0
does not miss 0.

124 \def\e@fi{\ifnum\mathcode ‘\0="8000 \global\FC@r=\m@ne\fi$\egroup

125 \ifnum\FC@r>0

If there was no decimal mark or if there was a decimal mark but no decimal
part, \FC@r will still be 1, which doesn’t parse well with \secd®xt, so a zero is
appended, i.e., yielding 10.

126 \ifnum\FCer=1 \FCOr=10 \fi

Next is a loop for bringing the decimal part in the correct way to the integer part.
This loop is performed the number of decimal digits to be printed (the 2 in 3,2
of the default setting). The higher this number is, e.g., 6 when 3,6 is chosen as
#3—but who does that?—, the lower the maximum initial value for \FC@1 can be,
before a low-level TEX arithmetic overflow will occur, so don’t overdo it.

127 \afterassignment\i@ts\count@\sp@l

128 \loop\ifnum\count0>0 \multiply\FC@l by 10 \expandafter\secd@xt

129 \number\FC@r\secd@xt \advance\countO by \m@ne \repeat

This also means that if more decimal digits than this are provided, the excess
digit(s) will not be handled. This is truncation, not rounding! If all truncated
digits are zero, this truncation is exact and they are silently ignored, see the
example Table 10, that was created with @{}1df1@{} (d for centering on the
decimal mark [3]) as tabular key. If, however, at least one of them is not zero, a
\PackageWarning will be given, showing the discarded digit(s). There is nothing
magical about the constant 19 below: it is simply the concatenation of 1 and the
largest decimal digit. The smallest next value that \FC@r can have is 100, so all
values from 19 up to and including 99 would have worked here.

14

\i@ts
\twel

\secd@xt

\@mksumline

Table 10: Truncating excess digits.

composer raw entry debt remark

Berg 123,450 123,45 silently ignoring digit “0”

Eisler 234,563 234,56 warning: digit “3” ignored

Schonberg 345,6704 345,67 warning: digits “04” ignored

Webern 2,3456 2,34 warning: digits “56” ignored, i.e.,
without rounding this entry to 2,35

706,02

130 \ifnum\expandafter\@gobble\number\FCOr>0

131 \PackageWarning{fcolumn}{Excess digit\ifnum\FC@r>19 s\fil\space

132 ¢ ‘\expandafter\tw@l\number\FCOr\relax’’ in decimal part

133 \MessageBreak ignored near or}

134 \fi

Don’t forget to correct for the sign (once this is done, \FCs@gn is free again and
can and will be used for other purposes). Then output the result.

135 \ifx\FCs@gn\m@ne\relax\FC@1=-\FC@1\fi\zetg@ld{\sp@1}{\FCQ1}\fi}

Macro \e@fi uses two very tiny macros, given here. In previous versions these
were defined inside \e@fi, so they also got undefined when \e@fi ended. The
current solution makes execution a bit faster.

136 \def\i@ts#1#2{\countO=#2} \def\tw@l#1#2\relax{#2}

The second digit from the left is needed from a string of characters representing
a decimal number (that should be at least 10 and start with a 1, but that is
guaranteed by \e@fi). The macro \secd@xt extracts that digit, which is then
added to \FC@1l. A new number is assigned to \FC@r, that consists of the digits
of 1#2, unless #2 was empty; in that case 10 is assigned. In this way \FCe@r is
prepared for insertion in the next invocation of \secd@xt. In iterating: 1234
yields 134, yields 14, yields 10, stays 10, etc.

137 \def\secd@xt1#1#2\secd@xt{\advance\FCQl by #1

138 \FCOr=1#2 \ifnum\FC@r=1 \FC@r=10 \fi}

4.3 The sumline, close to a postamble

The construction of the sumline is much easier than that of the preamble (see
Section 4.5) for several reasons. It may be safely assumed that the preamble spec-
ifier is grammatically correct because it has already been screened by \@mkpream.
Furthermore, most entries will simply add nothing to \s@ml@ne, e.g., @, !, and |
can be fully ignored. Ampersands are only inserted by ¢, 1, r, p, m, and b. So,
if \x is a macro that prints the desired result of the column (see below), then
a specifier like 1f1f will yield the sumline &\x&&\x\\. Had the specifier been
1l1fll1e{ }1If, then the same sumline must be constructed: all difficulties are
already picked up and solved in the creation of the preamble.

In reality the sumline must be constructed from the expanded form of the spec-
ifier, so @{}1fe{} will expand as @{}1>{\befi.,{3,2}{}}r<{\eefi}e{}. The
rules for constructing the sumline are now very simple:

e add an ampersand when c, 1, r, p, m, or b is found, unless it is the first one (this
is the same as in the preamble);
e add a \x when <{\e@fi} is found;

15

\@addtosumline

\@classfx

\@classfz

\@classfii

e ignore everything else;
e close with a \\.
(For completeness’ sake it should be mentioned that prior to the \\ also the
column check is inserted, see \aut@check.) To discriminate, a special version of
\@testpach [1] could be written, but that is not necessary: \@testpach can do
all the work, although much of it will be discarded. Here speed is sacrificed for
space and this can be afforded because the creation of the sumline is done only
once per tabular or longtable.

The start is copied from \@mkpream.
139 \def\@mksumline#1{\gdef\s@mlOne{}\@lastchclass 4 \@firstamptrue

At first the column number is reset and the actual code for what was called \x
above is made inactive.

140 \global\FCsc@l=0 \let\prr@sult=\relax

Then \@mkpream is picked up again.

141 \@temptokena{#1}\@tempswatrue\@whilesw\if@tempswa\fi{\@tempswafalse

142 \the\NC@list}\countO\m@ne\let\the@toks\relax\prepnext@tok

Next is the loop over all tokens in the expanded form of the specifier. The change
with respect to \@mkpream is that the body of the loop is now only dealing with
F-classes 0, 2, and 10. What to do in those cases is of course different from what to
do when constructing the preamble, so special definitions are created, see below.

143 \expandafter\@tfor\expandafter\@nextchar\expandafter:\expandafter=\the

144 \@temptokena\do{\@testpach\ifcase\@chclass\@classfz\or\or\@classfiilor

145 \or\or\or\or\or\or\or\@classfx\fi\@lastchclass\@chclass}/

And the macro is finished by applying the \aut@check and appending the \\
to the sumline. Note that the \aut@check is performed in the last column, but
since it does not put anything in the horizontal list—it only writes to screen and
transcript file—, this is harmless.

146 \xdef\s@mlOne{\s@ml@ne\noexpand\aut@check\noexpand\\}}

Macro \@addtosumline, as its name already suggests, adds something to the
sumline, like its counterpart \@addtopreamble did to the preamble.

147 \def\@addtosumline#1{\xdef\s@ml@ne{\s@ml@ne #1}}

Class f10 for the sumline creation is a stripped down version of \@classx: add an
ampersand unless it is the first. It deals with the specifiers b, m, p, ¢, 1, and r.

148 \def\@classfx{\if@firstamp \O@firstampfalse \else \@addtosumline &\fi}

Class {0 is applicable for specifiers c, 1, and r, and if the arguments of p, m, or b
are given. The latter three cases, with \@chnum is 0, 1, or 2 should be ignored and
the first three cases are now similar to class f10.

149 \def\@classfz{\ifnum\@chnum<\thr@@ \@classfx\fi}

Here comes the nice and nasty part. Class 2 is applicable if a < is specified. This is
tested by checking \@lastchclass, which should be equal to 8. Then it is checked
that the argument to < is indeed \e@fi. This check is rather clumsy but this was
the first way, after many attempts, that worked. It is necessary because the usage
of < is not restricted to \e@fi: the user may have specified other IXTEX-code
using <.

150 \def\@classfii{\ifnum\@lastchclass=8

16

\sumline

151 \edef\tO@stm{\expandafter\string\Onextchar}

152 \edef\t@stn{\string\e@fi} \ifx\t@stm\t@stn

If both tests yield true, i.e., we encountered a <{\e@fi} where we expect one to
find, then add the macro to typeset everything (this is what was mentioned \x
above for brevity).

153 \@addtosumline{\prr@sult}

But we’re not done yet: in the following lines of code the appropriate (count)s
and (dimen)s are created, if necessary. Note that \FCsc@l was set to 0 in the
beginning of \@mksumline, so it is well-defined when \@classfii is used.

154 \global\advance\FCsc@l by \@ne \ifnum\FCsc@l>\FCtc@l

Apparently the number of requested columns is larger than the currently available
number of relevant (count)s and (dimen)s, so new ones should be created. What
is checked here is merely the existence of \FCtot@<some romannumeral>. If it
already exists—although it may not even be a (count); that cannot be checked—
it is not created by fcolumn and an error is given. In case it is a (count) you're
just lucky, and you could ignore that error, although any change to this (count)
is global anyway, so things will be overwritten. In the case it is not a (count),
things will go haywire and you’ll soon find out. The remedy then is to rename
your {count) prior to fcolumn to avoid this name clash.

155 \expandafter\ifx\csname FCtot@\romannumeral\FCsc@l\endcsname\relax
156 \expandafter\newcount\csname FCtot@\romannumeral\FCsc@l\endcsname
157 \else

158 \PackageError{fcolumn}{Name clash for <count>}{\expandafter\csname
159 FCtot@\romannumeral\FCsc@l\endcsname is already defined and it may
160 not even be a <count>. If you’re\MessageBreak sure it is a <count>,
161 you can press <enter> now and I’11 proceed, but things\MessageBreak
162 will get overwritten.l},

163 \fi

And the same is applicable for the (dimen): in case of a name clash you have to
rename your (dimen) prior to fcolumn.

164 \expandafter\ifx\csname FCwd@\romannumeral\FCsc@l\endcsname\relax
165 \expandafter\newdimen\csname FCwd@\romannumeral\FCsc@l\endcsname

If the creation was successful, the (count) \FCtc@l should be increased.

166 \global\FCtc@l=\FCsc@l
167 \else

168 \PackageError{fcolumn}{Name clash for <dimen>}{\expandafter\csname
169 FCwd@\romannumeral\FCsc@l\endcsname is already defined and it may
170 not even be a <dimen>. If you’re\MessageBreak sure it is a <dimen>,
171 you can press <enter> now and I’11 proceed, but things\MessageBreak
172 will get overwritten.l},

173 \fi

174 \fi

175 \fi

176 \fi}

Once created, it is not necessary to initialise them here because that is done later
in one go.

The command for the sumline has one optional argument: the separation between
the rule and the total. By default this is 2pt, but the user may, e.g., specify

17

\prr@sult

\leeg

\sumline[10pt] if that separation needs to be 10 pt. The assignment needs to be
global, because it is done in the first column of the tabular, but is valid for the
whole line.

177 \newdimen\s@mlinesep

178 \def\sumline{\@ifnextchar [\s@mline{\s@mline [2pt]}}

179 \def\s@mline [#1]{\global\s@mlinesep=#1 \s@ml@ne}

In the introduction it was stated that \sumline has two options, but in reality
that second option is the option to \\, that is issued by \s@ml@ne.

The macro \prr@sult actually puts the information together. It starts like \leeg.
180 \def\prr@sult{$\egroup \let\e@fi=\relax \let\FCform@t=\FCform@tt

Then the information for the last line is computed. It is not sufficient to calculate
the width of the result (in points) to use that as the width of the rule separating
the individual entries and the result. It may happen that the sum is wider (in
points) than any of the entries, e.g., when the result of 646 (using specifier 3,2) is
typeset. The width of the rule should be equal to the width of \hbox{$12{,}00$}
then. On the other hand the width of the rule when summing 24 and —24 should
be that of \hbox{$-24{,}00$} (or \hbox{$(24{,}00$}, see above), not the width
of the result \hbox{$0{,}00$}. Therefore the maximum of all entry widths, in-
cluding the result, was calculated. This excludes the extension to the right in case
parentheses are used, again for aesthetic reasons.

181 \setbox0=\hbox{$\geldm@cro{\sp@l}{\number\csname

182 FCtot@\romannumeral\FCsc@l\endcsname}$}/,

183 \ifdim\wdO>\csname FCwd@\romannumeral\FCsc@l\endcsname

184 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\wdO

185 \fi

186 \vbox{\hrule width \csname FCwd@\romannumeral\FCsc@l\endcsname

187 \vskip\s@mlinesep

188 \hbox to \csname FCwd@\romannumeral\FCsc@l\endcsname{\hfil\unhbox0}}}

4.4 Other checks

This macro is used to overrule the default behaviour of the pair \b@fi and \e@fi.
It starts with ending the groups in the same way that \e@fi would normally do.
Then the effect of \e@fi (that is still in the preamble) is neutralised by \letting it
to be \relax. This \let is only local to the current column. Then the argument
to \leeg is processed in the normal way for a right aligned column.

Since the user may from time to time also need a column entry other than
a number in the table, e.g., \leeg{p.m.}, this definition is without at-sign. By
defining \leeg in this way, instead of \multicolumnir{} (which contains \omit),
the default spacing in the column is retained. It doesn’t alter the width of the
sumrule, but has its normal effect on the column width, so be careful: don’t insert
the unabridged version of Romeo and Juliet [11] here. It is not typeset in math
mode, nor does it use the extra (formatting) information of #4 of the fcolumn, so
you're completely free here.
189 \def\leeg#1{$\egroup \let\e@fi=\relax #1}

Note that anything may be given as argument to \leeg, so in principle it can also
be used to cheat: \leeg{0,03} will insert the text 0,03 in the table but it doesn’t
increase the totals of that column by 3 (assuming 3,2 coding for the separations).
But you won’t cheat, won’t you?

18

\res@tsumline

\resetsumline

\aut@check

Since all changes to the totals and widths of the columns are global, they have
to be reset actively at the start of a tabular or array. That is an action by itself,
but it may occur more often, on request of the user, therefore a special macro
is defined. A side effect of this macro is that \FCsc@l is reset to 0. This is an
advantage: it should be zero at the beginning of a line in the table (for other lines
this is done by the \\).

190 \def\res@tsumline{\FCsc@l=\FCtc@l\loop\ifnum\FCsc@1>0
191 \global\csname FCtot@\romannumeral\FCsc@l\endcsname=0
192 \global\csname FCwd@\romannumeral\FCsc@l\endcsname=\zQ
193 \advance\FCsc@l by \m@ne\repeat}

To reset a sumline within a table, it should be done within a \noalign.
194 \def\resetsumline{\noalign{\res@tsumline}}

If the number of F-columns is even, it is assumed that they are part of two sets
of columns of which each column of the first set should balance the appropriate
column of the second set. If on the other hand the number of columns is odd, then
at least one column has nothing to balance against and no automatic checking
occurs. It is correct to check for oddness of \FCsc@l since this \aut@check is only
performed in the last column of the tabular: the value of \FCsc®l now equals the
number of columns used in the current tabular (and may be less than \FCtc@l).
The output is only to screen and the transcript file; it doesn’t change the
appearance of your document, so in case the assumption is wrong you can safely
ignore the result and go on. The (count)s 0 and 1 are used here and this can be
done because any content of those (count)s from previous calculations has become
irrelevant at this moment.
If the list \FC@chklist is empty, the list for the automatic check is generated
(which will remain empty if \FCsc@l is odd).
195 \def\FCOchklist{}
196 \def\aut@check{\ifx\@empty\FC@chklist\relax
197 \ifodd\FCsc@l\else
198 \count0=\@ne \count1=\FCsc@l \divide\countl by \tw@
199 \loop\ifnum\count1<\FCsc@l \advance\countl by \@ne
200 \xdef\FC@chklist{\FC@chklist\number\countO, \number\counti;}%
201 \advance\countO by\@ne \repeat
202 \fi
203 \fi

Then this list is peeled off and processed. The comparison is done between the
internal representation of the totals, so this only makes sense when the decimal
part, i.e., the 2 of 3,2 in the default value for #3 of £ is the same for both columns.
That is almost always the case due to the nature of this type of tabulars. The
(count) \FC@1 is free to be used for the calculations needed here.

204 \loop\ifx\FC@chklist\@empty\else

205 \expandafter\fre@t\FCQchklist\fre@t

206 \FC@l=\csname FCtot@\romannumeral\countO\endcsname

207 \advance\FC@l by -\csname FCtot@\romannumeral\countl\endcsname

208 \ifnum\FC@1=0 \else \ifnum\FC@1<0 \FC@l=-\FC@l \fi

209 \PackageWarning{fcolumn}{Representations of F-columns \number
210 \countO \space and \number\countl \space differ by\MessageBreak
211 \number\FC@l\space due to \string\sumline\space near orl}j,

212 \fi

19

\fre@t

\checkfcolumns

\Qarray

213 \repeat}

When \aut@check is finished, \FC@chklist is empty again, i.e., well prepared for
the next time it is used. This also means that the default behaviour kicks in again:
if that’s not what you want, you should specify the appropriate \checkfcolumns
lines again.

This function eats the first two numbers off \FC@chklist.
214 \def\fre@t#1,#2;#3\fre@t{\countO=#1 \countl=#2 \xdef\FC@chklist{#3}}

But the assumptions for \aut@check may be wrong, therefore manual control on
this checking is also made possible here. The macro \checkfcolumns provides a
way to the user to check that the appropriate columns are balanced (as it should
in a balance). Arguments #1 and #2 are the F-column numbers to compare. It is
the responsibility of the user to provide the correct numbers here, otherwise bogus
output is generated. If this manual check is inserted, the automatic check will not
be performed.

215 \def\checkfcolumns#1#2{\noalign{\xdef\FC@chklist{\FCOchklist #1,#2;}}}

4.5 Adaptations to existing macros

The definition of \@array had to be extended slightly because it should also in-
clude \@mksumline (acting on the same #2 that \@mkpream gets). This change is
transparant: it only adds functionality and if you don’t use that, you won’t notice
the difference. These changes could also be done via the hook-mechanism, but
currently that’s not supported: something for a next version.
It starts by just copying the original definition from v2.6¢ (or later) of the
array package [1], compacted.
216 (xtagging)
217 \ExplSyntaxOn
218 (/tagging)
219 \def\Qarray [#1]#2{\O@tempdima\ht\strutbox\advance\Q@tempdima by
220 \extrarowheight\setbox\Q@arstrutbox\hbox{\vrule\@height\arraystretch
221 \@tempdima\@depth\arraystretch\dp\strutbox\@width\z@}%
222 (xtagging)
223 \tbl_save_outer_table_cols:
224 (/tagging)
225 \begingroup\@mkpream{#2}/,
226 (xtagging)
227 \tbl_count_table_cols:
228 (/tagging)
229 \xdef\@preamble{\noexpand\ar@ialign\@halignto
230 \bgroup\@arstrut
231 (xtagging)
232 \UseTaggingSocket{tbl/row/begin}
233 \tbl_init_cell_data_for_row:
234 (/tagging)
235 \@preamble\tabskip\z@\cr}\endgroup
After this \endgroup a \begingroup is issued; this ensures that \@mksumline
that is created there experiences the same environment that \@mkpream saw. As
a side product of \@mksumline also the (count)s for the totals and (dimen)s for
the widths of the columns are created. All columns should start fresh, i.e., totals

20

\LTQarray

are 0 and widths are 0 pt. This can be done within the group, as these resettings
are global.

236 \begingroup\@mksumline{#2}\res@tsumline
From here on it is just the old definition of array.sty.

237 \endgroup\Qarrayleft\if #1t\vtop\else\if#1b\vbox\else\vcenter\fi\fi
238 \bgroup\let\@sharp ##\let\protect\relax\lineskip\z@\baselineskip\z@
239 \mathsurround \z@ \let\\\@arraycr \let\tabularnewline\\\let\par\@empty

240 (xtagging)
241 \UseTaggingSocket{tbl/init}

242 (/tagging)

243 \@preamble}

Because \@array was changed here and it is this version that should be used,
\@@array should be \let equal to \@array again.

244 \let\@Q@array=\Qarray

Here comes an accompanying change: after each \\ (or \cr for that matter)
the (count) \FCsc@l should be reset. This is easiest done with \everycr, but
\everycr is essentially put to {} by \ar@ialign, so that definition should change.
The resetting should be done globally. Then the definition is picked up again.

245 \def\ar@ialign{’

246 (*tagging)
247 \tbl_init_cell_data_for_table:

248 (/tagging)
249 \everycr{\noalign{\global\FCsc@1=0

250 (xtagging)

251 \tbl_if_row_was_started:T{\UseTaggingSocket{tbl/row/end}}
252 \tbl_update_cell_data_for_next_row:

253 (/tagging)

254 }}\tabskip\z@skip\halign}

Much of the techniques here are repeated in \LT@array, see the next section.

4.6 Support for multipage tables

Packages longtable [4] and supertabular [5] can be used for tables that span
multiple pages. Package supertabular works with fcolumn out of the box (no
changes needed), but may lead to different column widths on individual pages. If
you don’t want that, use longtable. The packages fcolumn and longtable also
work together because only one definition of longtable needs to be changed if it
is present. That change is done via a Hook [12], so it no longer matters in which
order fcolumn and longtable are loaded. More happens under the hood if also
caption [13] is loaded, and even that is running fine. But with the near infinite
number of packages that exist nowadays I did not check all combinations, so I may
have overlooked some.

255 (xtagging)

256 (@O@=tbl)

257 (/tagging)

And here is the only definition of longtable that needs to be extended to make
fcolumn work with that package. The lines are compacted a bit w.r.t. the original

21

longtable code; if you want to study the code, have a look at the documenta-
tion [4]. Tt is defined, even if longtable is not loaded.

258 \AtBeginDocument{\def\LTQarray [#1]#2{/,

259 (xtagging)

260 \UseTaggingSocket{tbl/init}\tl_if_empty:eTF{\LTcaptypel’

261 {\tl_gset:Ne\@currentHref{LT@tables.\theHLT@tables}}{’

262 (/tagging)

263 \@kernel@refstepcounter{\LTcaptypel}\stepcounter{LTOtables}

264 (xtagging)

265 \tl_gset:Ne\@currentHref{\LTcaptype.\cs_if_exist_use:c

266 {theH\LTcaptype}}}\tbl_gzero_row_count:

267 \UseTaggingSocket{tbl/longtable/init}

268 (/tagging)

269 \if 1#1\LTleft\z@\LTright\fill\else\if r#1\LTleft\fill\LTright\z@
270 \else\if c#1\LTleft\fill\LTright\fill\fi\fi\fi\let\LT@mcol

271 \multicolumn\let\LTQQ@@Qtabarray\@tabarray\let\LT@@@Ghl\hline

272 \def\@tabarray{\let\hline\LT@Q@QGh1l\let\multicolumn\LT@mcol

273 \LT@QQ@Qtabarray}\let\\\LT@tabularcr\let\tabularnewline\\

274 \def\newpage{\noalign{\break}}\def\pagebreak{\noalign{\ifnum‘}=0
275 \fi\@testopt{\LT@no@pgbk-}4}\def\nopagebreak{\noalign{\ifnum*}=0
276 \fi\@testopt\LT@no@pgbk4}\let\hline\LT@hline\let\kill\LTOkill
277 \let\caption\LT@caption\@tempdima\ht\strutbox\let\@endpbox

278 \LT@endpbox\ifx\extrarowheight\Q@undefined\let\Q@acol\@tabacol\let
279 \@classz\@tabclassz\let\@classiv\@tabclassiv\def\@startpbox{%
280 \vtop\LT@startpbox}\let\@0@@startpbox\@startpbox\let\@@@Gendpbox
281 \@endpbox\1let\LTOLLQ@FMQ@cr\@tabularcr\else\advance\Q@tempdima

282 \extrarowheight\col@sep\tabcolsep\let\@startpbox\LT@startpbox
283 \1let\LT@LLOFMQcr\Q@arraycr\fi\setbox\@arstrutbox\hbox{\vrule

284 \G@height\arraystretch\@tempdima\@depth\arraystretch\dp\strutbox
285 \@width\z@}\let\@sharp##\let\protect\relax

286 \begingroup\@mkpream{#2}J,

287 (*tagging)

288 \tbl_count_table_cols:

289 (/tagging)

290 \xdef\LT@bchunk{%

291 (xtagging)

292 \tbl_inbetween_rows:

293 (/tagging)

294 \global\advance\c@LT@chunks\@ne\global\LT@rows\z@\setbox\z@\vbox
295 \bgroup\LT@setprevdepth\tabskip\LTleft\noexpand\halign to\hsize
296 \bgroup\tabskip\z@\@arstrut

297 (xtagging)

298 \UseTaggingSocket{tbl/row/begin}\tbl_init_cell_data_for_row:
299 (/tagging)

300 \@preamble

301 \tabskip\LTright\cr}\endgroup

Until this line it was just the code for \LT@array from package longtable. The
three lines of the next chunk are new to \LT@array. Their purpose is the same as
in \@array above.

302 \begingroup\@mksumline{#2}\endgroup\expandafter\LT@nofcols

303 \LT@bchunk&\LT@nofcols\LTO@makeO@row\m@th\let\par\Qempty
304 \res@tsumline\everycr{\noalign{\global\FCsc@1=0

22

And with tagging even more tests are performed.

305 (*tagging)

306 \@@_trace:n {--longtable-->"chunk™row:~ \the\LT@rows\space
307 row:” \the\g_Q@_row_int \space column:~ \the\g_Q@_col_int}
308 \tbl_if_row_was_started:T {\UseTaggingSocket{tbl/row/end}
309 \tbl_inbetween_rows:}\int_compare:nNnT\LT@rows<\LTchunksize
310 {\tbl_gincr_row_count:} % Next is row about to start

311 (/tagging)

312}

From here on \LT@array is picked up again.

313 \lineskip\z@\baselineskip\z@\LT@bchunk}}

314 (xtagging)

315 \ExplSyntax0ff
316 (Q0=)

317 (/tagging)

When longtable splits a table, i.e., is doing what you loaded it for, modern
versions of pdf A TEX complain about infinite glue shrinkage. This is due to a \vss
in the definition of \LT@output. It’s not an error and can be ignored, but it is
annoying since it interrupts generating the output file. The author of longtable
announced a fix in \LT@output in the next version of that package [14].

That’s it!

Acknowledgement

Thanks to Karl Berry for valuable comments regarding the consistency of the
installation procedure of this version. Frank Mittelbach gave various useful sug-
gestions for improving the input parsing as well as hints to make the package more
TEX-like. He also challenged me to make fcolumn compatible with longtable.
Christian Hoff’s request on column formatting triggered many happy hours of
coding.

References

[1] Frank Mittelbach and David Carlisle. A new implementation of KTEX’s
tabular and array environment: www.ctan.org/pkg/array.

[2] Simon Fear and Danie Els, the booktabs package. Publication quality tables
in M TEX: www.ctan.org/pkg/booktabs.

[3] David Carlisle, the dcolumn package: www.ctan.org/pkg/dcolumn.

[4] David Carlisle, the longtable package: www.ctan.org/pkg/longtable.

[5] Theo Jurriens and Johannes Braams, the supertabular package, to be found
at: www.ctan.org/pkg/supertabular.

[6] Ulrike Fischer, the tagpdf package: www.ctan.org/pkg/tagpdf.

[7] David Carlisle, the color package: www.ctan.org/pkg/color.

[8] Donald Knuth, Computers & Typesetting/B, “TgX: the program,” Addison-
Wesley, Reading (1991).

[9] Donald Knuth, Computers € Typesetting/A, “The TpXbook,” Addison-
Wesley, Reading (1991).

23

www.ctan.org/pkg/array
www.ctan.org/pkg/booktabs
www.ctan.org/pkg/dcolumn
www.ctan.org/pkg/longtable
www.ctan.org/pkg/supertabular
www.ctan.org/pkg/tagpdf
www.ctan.org/pkg/color

[10]

[11]
[12]

[13]
[14]

Donald Knuth, The Art of Computers Programming, volume 1, “Fundamental
Algorithms,” Addison-Wesley, Reading (1997).

William Shakespeare, Romeo and Juliet, a tragedy (1597).

Frank Mittelbach, “I#TEX’s hook management”, www.latex-project.org/
help/documentation/lthooks-doc.pdf.
Axel Sommerfeldt, the caption package: www.ctan.org/pkg/caption.

See discussion at https://github.com/latex3/latex2e/issues/1907.

Change History

v0.1

General: First working version. . . .

v1.0

General: Three-argument version is
working properly.

vl.l

General: Automatic checking of
column balance performed
when number of F-columns is
even (behaviour can be
overridden). Empty entries are
now recognised and correctly
treated as such, except for the
one ended by the double
backslash. Not serious;
workaround possible.
Furthermore optimisation of
code: minimised the number of
private counts and resetting of
column counter done in a nicer
way.

vl.1l.1

General: Installation procedure
changed from .ins-in-.dtx to
separate .ins and .dtx after
discussion with Karl Berry, as
well as some minor code
improvements.

v1.1.2

General: Some inconsistencies
between explanatory text and
actual code removed.

v1.2

General: Input parsing changed
after comment from Frank
Mittelbach. He (Frank) also
gave various suggestions for
improving robustness or user
friendliness of this package.
This version is only backwards
compatible when zero decimal

v1.3

digits were and are specified as
modifier. 1

General: Christian Hoff requested

vl.4

the possibility to provide extra
formatting information to a
column, e.g., colouring. That
was implemented by having an
extra parameter to the generic
F-column. The current
solution is not very robust, as
font and/or size change in
math environment are very
tricky, but providing colour
information works, see the
example in the main text. This
version is now compatible with
package longtable and
backwards compatible to
fcolumn v1.2: it only adds
functionality.

General: More robust version on

vl4.1

the extra formatting

information: alternative
formatting after the comma (if
any), instead of additional
information. Corrected a few
typos. . ..o 1

General: Definition needed for

v1.4.2

longtable only if that package
is loaded. General update,
streamlining code. Excess
digits silently ignored when all
Z€ro.

General: Better documentation.

24

Removed redundant
endgroup/begingroup pairs and
other small improvements.

www.latex-project.org/help/documentation/lthooks-doc.pdf
www.latex-project.org/help/documentation/lthooks-doc.pdf
www.ctan.org/pkg/caption
https://github.com/latex3/latex2e/issues/1907

Unbalanced columns are
reported by stating their
difference. Implementation of
option “red”. No changes in

user experience.

v1.4.3

General: Attempt to make fcolumn

Index

tagging-aware. Included my
name and e-mail in README
(CTAN obligation). Changed
makefile to produce a

1 fcolumn.tgz that contains files

in fcolumn/. Removed some

typos. 1

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@Qarray 244
\@addtosumline

147, 148, 153
\Qarray 216
\Q@arraycr 239, 283
\@arrayleft 237
\@chclass 144, 145
\@chnum 149
\@classfii 144, 150
\@classfx . 145, 148, 149
\@classfz 144, 149
\@empty 91,
196, 204, 239, 303
\@ifnextchar 178
\@kernel@refstepcounter
........... 263
\@lastchclass
139, 145, 150

\@mksumline 139, 236, 302

\@tabularcr 281
\@testopt 275, 276
\@testpach 144
\@undefined 278
N L 146, 239, 273

\~ 89,103, 108, 113, 115

Numbers
\0 106, 109, 113, 115, 124

A
\actdecm@rk ... 118, 119
\afterassignment

..... 16, 105,

107, 110, 118, 127
\ar@ialign 229, 245
\assignform@t . 90, 96
\AtBeginDocument .. 258
\aut@check 146, 195

B
\befi 11, 95
\begingroup

. 225, 236, 286, 302
\bm@nus 17, 18, 19
C
\c@LT@chunks 294
\caption 277
\checkfcolumns 1, 215
\col@sep 282
\color 18
\column F 11
\column f 11

\csname 65, 67, 69, 72,
85, 86, 155, 156,

158, 164, 165,
168, 181, 183,
184, 186, 188,
191, 192, 206, 207
D
\d@cm 110, 119
\deactdecm@rk . 107, 119
\decim@lmark 27,95
\DeclareCurrentRelease
............. 2
\DeclareOption 6,7
\DeclareRelease 1
\du@zendprint 53, b4
E
\e@fi 11,
124, 152, 180, 189
\em@nus 18, 40, 41, 42
\endcsname
. 65, 67, 69, 72,
85, 86, 155, 156,
159, 164, 165,

25

169, 182, 183,

184, 186, 188,

191, 192, 206, 207
\endgroup

. 235, 237, 301, 302
\everycr 249, 304
\expandafter ... 93,

103, 111, 112,

128, 130, 132,

143, 151, 155,

156, 158, 164,

165, 168, 205, 302
\ExplSyntax0ff 315
\ExplSyntaxOn 217
\extrarowheight

220, 278, 282
F
\F .. 1
\FC@chklist
195, 196, 200,

204, 205, 214, 215
\FCel ... 88,97, 104,

111, 114, 116,

128, 135, 137,

206, 207, 208, 211
\FCer 88, 97,

107, 112, 124,

125, 126, 129,

130, 131, 132, 138
\FCform@t 19, 90, 180
\FCform@tt 91,180
\FCs@gn .. 40, 64, 66,

68, 70, 71, 73,

75, 81, 101, 116, 135
\FCsc@l 13, 65,

67, 69, 72, 77,
85, 86, 96, 140,
154, 155, 156,

159, 164, 165,
166, 169, 182,
183, 184, 186,
188, 190, 191,
192, 193, 197,

198, 199, 249, 304

\FCtc@l 13, 154, 166, 190
\fre@t 205, 214
G
\g@ldens 26, 43
\g@ldm@cro 16, 17
\gdef 139
\geldm@cro 14, 84, 181
H
\halign 254, 295

\hbox 84, 101,
181, 188, 220, 283
\hrule 186
1
\i@ts 127, 136
\ifminusred .. 1,4, 8, 18
\ifstrict@ccounting
...... 1,5,8,17
\ifwiths@p 14, 54
\inputlineno 77
L
\leeg 1, 189
\LT@array 258
M
\m@th 99, 303
\m@thcodeswitch
. 92, 104, 106,
109, 114, 116, 118
\mathcode . 93, 106,
109, 111, 113,
115, 117, 120,

121, 122, 123, 124

\MessageBreak
78,79, 133, 160,
161, 170, 171, 210

\minusr@dfalse 4,8
\minusr@dtrue 6
\multicolumn .. 271, 272
N
\NC@list 142
\NeedsTeXFormat 3
\newcolumntype .. 11,12
\newcount 13, 88, 156
\newdimen 165, 177
\newif 4,5, 14
\noalign 194, 215,
249, 274, 275, 304
\noexpand
. 103, 146, 229, 295
\number 38, 55,
56, 63, 77, 129,
130, 132, 181,
200, 209, 210, 211
o
\option red 4
\option strict 4
P
\PackageError
..... 76, 158, 168

\PackageWarning 131, 209
\PackageWarningNoLine

............. 9
\phantom 41
\ProcessOptions 8
\prr@sult . 140, 153, 180

R
\res@tsumline

. 190, 194, 236, 304
\resetsumline . 1,194
\romannumeral

. 65, 67, 69, 72,

85, 86, 155, 156,

26

159,
169,
184,
191,

164,
182, 183,
186, 188,
192, 206, 207

165,

\s@ml@ne
. 139, 146, 147, 179
\s@mline 178, 179
\s@mlinesep 177,179, 187
\secd@xt .. 128, 129, 137
\sep@rator 54, 119
\sep@xt 95, 119
\setucc@de 89, 105
\sp@l1 .. 95,127, 135, 181
\strict@ccountingfalse

\sumline 1, 177, 211

\t@stm
\t@stn
\twel

151, 152
152
132, 136

\uccode 89,
103, 108, 113, 115
\uppercase 103,
106, 109, 113, 115
\usepackage 10
\UseTaggingSocket
232, 241, 251,
260, 267, 298, 308

w
\withs@pfalse 15
\withs@ptrue 56

Z
\zerop@d 38, 55, 56, 57
\zetgld 64, 135

	Introduction
	Commands
	Tagging
	The macros
	Options
	Definitions
	The sumline, close to a postamble
	Other checks
	Adaptations to existing macros
	Support for multipage tables

	References
	Change History
	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

